ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Journal influence

Higher Attestation Commission (VAK) - К1 quartile
Russian Science Citation Index (RSCI)

Bookmark

Next issue

2
Publication date:
16 June 2024

Articles of journal № 2 at 2019 year.

Order result by:
Public date | Title | Authors |

11. An improved neural network training algorithm [№2 за 2019 год]
Authors: V.N. Zuev, V.K. Kemaykin
Visitors: 4559
The paper describes heuristic modification of backpropagation algorithm using for remote batching. The backpropagation algorithm is a common algorithm for neural network training. It causes some difficulties. The main problem is enabling the generalizing of a neural network. The ability of general-izing is a most important characteristics of a neural network. It assumes that a neural produces antici-pated values on data that is not a part of a training process. However, using of noisy data causes re-training and decreasing of a generalizing ability of a neural network. The problems considered in the paper are an important part of a neural network training process. The paper describes a method to use objective functions effectively. The proposed method allows more effective calculating of the values of a goal function that is a base of the backpropagation algorithm. It also ignores failure values in training data and excludes them at earlier stages. In addition, the method allows using heterogeneous data samples for training neural networks, as well as taking into account prior information on the significance of some examples when training. The paper describes the algorithm of the proposed method. The method will improve the accuracy of a neural network for classification and regression tasks.

12. Forecasting the state of a technical object using machine learning methods [№2 за 2019 год]
Authors: Klyachkin, V.N., D.A. Zhukov
Visitors: 6984
State identification of a technical object during its operation enables early detection of malfunction and in-service repair. The diagnostics is frequently confined to splitting object states into two classes: a healthy and failure state. When solving this problem, it is possible to use machine learning methods for binary classification. The basic data in this paper are the known results (precedents) of a system state evaluation: the technical system is nonfaulty or faulty with predetermined values of monitored indicators. There are many different approaches to binary classification. They are classical statistical models, methods fo-cusing on machine learning, composite methods and others. In order to improve quality of forecasting, it is appropriate to use an aggregated approach that is a combination of several classification methods. The program developed in Matlab allows forecasting a system state by its predetermined operation indicators. The user may select a validation set volume, a learning method, and recognition quality cri-teria. The authors have conducted a numerical study on two examples. The evaluation of a hydraulic unit good condition has taken into account a vibration stability criterion according to the results of moni-toring sensors installed in various places. The aggregated classifier which includes gradient boosting and logistic regression showed the best result. In analysis of water treatment system in respect to drink-ing water quality, the maximum F-criterion value was when aggregating a neural network and bagging of decision trees.

13. Special aspects of DWDM technology for fiber optic multiplexing [№2 за 2019 год]
Authors: Yu.M. Lisetskiy, Yu.S. Perekopayko
Visitors: 4626
The paper considers the importance of DWDM technology for wavelength division multiplexing of fi-ber optic channels that enables multiplication of bandwidth of a fiber optic cable infrastructure. It is achieved by transmitting of up to 160 independent information channels through one optic fiber. Dif-ferent wavelengths are used to carry traffic with different protocols and speeds. This is an important problem for telecommunications service providers owning numerous fiber optic backbone networks and facing the need to dense the traffic in view of dynamic growth of the amount of subscribers, aver-age duration of communication sessions and introduction of new non-voice services. Conventional fiber optic technologies use one pair of fibers to transmit one channel data. On the contrary, the basic feature of DWDM is the ability to transmit N channels through one pair of fibers. It is achieved through transmitting each data stream on adjoining carrying frequencies. Their operating ranges in DWDM technology are usually called wavelengths. The paper analyzes optic multiplexers combining wavelengths into one composite signal before en-tering the fiber optic line. The receiving side then decomposes it into different channels. Their essential feature is the ability to decompose and compose composite signal to single out a wavelength or set of wavelengths and transmit the rest further down the line unchanged. There are demonstrated features of optic multiplexers as well as the evolution of their development. The paper describes the conceptions of Colorless & Omnidirectional ROADM which eliminates the need to reserve a wavelength on a permanent basis or automatically reroute services through vacant wavelengths on another direction in case of line failure. It is noted that the concepts of omnidirectional and colorful DWDM together with Flex Spectrum technology and dynamic plane of WSON manage-ment are key elements of innovative solution for Cisco nLight fiber optic transport networks. Typical-ly, the DWDM technology utilizing ROADM nodes is used to modernize or expand existing fiber optic networks to increase their bandwidth and availability.

14. Programs for simulating temperature fields in cylindrical products [№2 за 2019 год]
Authors: Margolis B.I., Mansoor Gubran Ali
Visitors: 6760
The paper describes a temperature field model in a cylindrical product during an asymmetric convective-radiative heat transfer of surfaces with the environment and protecting surfaces (heating elements) of production equip-ment. The equations for calculating temperature distribution in the product using numerical finite-difference methods. There is a calculation example of convective-radiative cooling of a cylindrical body. It is stated that the described problem is possible to solve in Matlab. Based on the standard MatLab function pdepe, there is a developed program that allows simulating a product temperature field according to specified on thermo-physical characteristics of the material (thermal conductivity, temperature conductivity) and parameters of the convective-radiative heat transfer (a convective heat transfer co-efficient and given degrees of blackness). The paper describes the program development features related to assign-ing functions of differential equations, initial and boundary conditions. There are the main functions of the devel-oped programs, as well as the temperature distribution calculation results. The authors present a comparative analysis of the problem solution in Matlab with the results obtained using finite-difference relations. They also demonstrate their good agreement. A two-dimensional heat conduction prob-lem in a cylindrical body is solved using a parabolic function, which is one of Matlab tools to solve parabolic type problems. The cylindrical domain has been triangulated using the initmesh function. There are some fragments of the program codes of boundary conditions functions and a visual image of a two-dimensional temperature distri-bution in a hollow cylinder. When solving a thermal two-dimensional cylindrical problem, the temperature gradi-ents in height are almost absent. Therefore, there is an excellent coincidence of the temperature field with the re-sults obtained by finite-difference methods and using the function pdepe. The developed methods in the long term allow solving problems of modeling temperature field in high-quality cylindrical glass products (a glass, a bottle, a flask) that have a side face and a back surface.

15. A specialized enterprise service bus for unified information space of oil and gas industry [№2 за 2019 год]
Authors: N.G. Markov , I.V. Evsyutkin
Visitors: 3218
The paper shows that many modern companies operate a large number of heterogeneous information systems for various purposes. Therefore, their integration is relevant. In this regard, it is important to develop a linking software system, which should be specialized for specific conditions of a company. One of the research areas in this field is studying capabilities of a service-oriented architecture concept in relation to building corporate information systems and integrating them with the already operated in-formation systems of a company in order to create a unified information space. A key component in a service-oriented architecture is an enterprise service bus (ESB). This is a middleware for centralized and unified event-oriented messaging between different information systems. The paper analyzes the most popular existing ESB and integration platforms for developing new ESB. It is shown that the most part of the existing ESB is functionally excessive, has high price and re-quires additional development taking into account the specifics of a company when developing ESB on a platform basis. Therefore, creation of new specialized ESB is likely to succeed. It is shown that a framework that is sufficient for developing a specialized ESB for the companies of oil and gas industry is .NET framework. The paper considers functionality of the created specialized ESB and its program implementation features. There are the results of the efficiency research of a specialized ESB and its comparative analysis with ESB of the most popular producers. The paper shows the results of approba-tion of an specialized ESB when solving the problem of integrating various information systems for production management of an oil and gas extraction company using a service-oriented architecture model for the unified information space of the company.

16. Social features of mobile application development [№2 за 2019 год]
Author: A.I. Mostyaev
Visitors: 4466
Modern mobile application development technologies evolved at an unprecedented rate seeking for newer and newer user demands. Developers are working hard to not fall behind and try to maintain the popularity of their applications in all kinds of ways, introducing new amazing features and options. The paper describes the most common features of mobile applications and their support comparing with desktop analogs. Considering these features during mobile application development and maintenance should eliminate a misunderstanding between mobile users and mobile developers. It will be usefull for both sides. The paper starts with a quick overview of the mobile application history, giving a picture of the evolution speed in the industry. Further, it describes the most common mobile application features. A special attention is given to both technical details and usability of applications. The following features are marked: close integration with an operating system, short sessions, internet service integration and variety of mobile devices. The development features are a special life cycle and integration of third-party internet services. A special attention is paid to the quality of application localization, localization features for some countries and working with text and visual data in application stores. In conclusion, the paper gives a list of requirements to a modern successful application. The author also mentiones an interesting fact that development features of these applications are related to the cur-rent social trends.

17. Problems and methods of their decision in the net automatical systems of the Navy's technical support control [№2 за 2019 год]
Authors: E.I. Mukhitov, A.A. Bavula
Visitors: 4009
The object of investigation is a net structure of the Navy maintenance support. The development of lo-gistical intelligent systems, virtual agencies of military control, net strategy, and other advanced tech-nologies will be based on experience, knowledge, intuition of officer managers and will be integrated into artificial intellect systems for military purposes. The net architecture will contribute to creating of intellectual environment in the socio-, techno- and cyber spheres, all types of human activities, includ-ing the further work of net operators, who are able to operate information, integrate into knowledge (scenarios) and provide ready-made solution options for the officials of the maintenance support con-trol agencies using artificial intelligence. One of ways of creating a highly effective net architecture is algorithmisation and growth of net computing resource accessibility. Modern and practical accents are moving from the “computer” con-cept to the “net” concept, and from intelligent activities of officer operators of military control agen-cies to introduction of virtual net operators, who are able to process badly formalised information (to aggregate, separate, refine, integrate, analyze, etc.). Therefore, automated control systems are able to provide mathematically adjusted ready-made scenarios of decisions for decision makers using software and specializing artificial intelligence systems. The novelty of the proposed method is that during decision-making, as far as the hierarchy of the maintenance support control increases, the comparative analysis and the criterial estimation in a quali-ty spiral occur simultaneously. The integration of these processes is an additional important factor for modernization of advanced automated control systems. Modern wars and their transition into the cy-berspace do not leave the time for the important decision-making stages for the officials of the control agencies. Therefore, the proposed scenario-logistical approach and the algorithmisation of mainte-nance support processes will give the opportunity to reduce the time and provide a sufficiently high quality level of administrative decisions.

18. The architecture of a production processes monitoring system in terms of geographically distributed production [№2 за 2019 год]
Authors: Solomakha, G.M., Khizhnyak, S.V.
Visitors: 4892
The paper describes an architecture of a production process monitoring system, which provides an op-portunity to receive relevant and detailed information on geographically distributed production, as well as to observe indicators that are aggregations of other indicators. The system enables working in a dis-tributed mode, which simplifies the implementation and operation in terms of geographical distribution of production. All components, subsystems, as well as the protocol and their coordination arrange-ments are focused both on using geographically distributed, and other productions. The paper presents the main drawbacks of the existing solutions regarding work under conditions of geographical distribution of production. It also outlines the requirements for a system architecture, which has the qualities that are necessary for working in such conditions, formed based on the identi-fied drawbacks. The paper describes the main subsystems and components of the proposed system, their purpose, functions and operation principles. There is a description of the interaction protocol be-tween subsystems and components. The approach to the development of such protocol is justified. There is a description of a data processing order, a data storage method, as well as its format and signa-ture. The data is presented in JSON format. The event model is selected as the exchange model between components. The paper justifies the approach to architecture design, presents the main technologies and tools for system development, and justifies this choice. There are architecture schemes in various combinations of distributed components. Several examples of the functioning of individual components and their in-teraction are considered. Based on the conducted research, the authors have made conclusions and proposed possible pro-spects for the development of the covered topic.

19. A complex mathematical model of the air anti-stealth airship radar system [№2 за 2019 год]
Author: S.V. Susha
Visitors: 4143
One of the stages of creating an anti-stealth airship radar system and evaluating its effectiveness is the development of an integrated mathematical model. This paper presents the structure of such model. The model is developed to substantiate the technical appearance of the system and its application features, as well as to evaluate operating effect and combat (information) capabilities. A mathematical model of the system is based on the basic construction principles and a complex structure. The system itself is an information tool representing a complex radio system. The hardware and software of the system should be located both on the ground and in the air. The structure of the system mathematical model includes several functionally complete blocks and models, in particular, models of a target environment, the Earth, on-board systems of the airship radar system, etc. The paper describes particular mathematical models that are a part of an integrated one, their mutu-al interaction. The radar model of the dirigible radar system is based on calculating detection parameters (signal-noise ratio) using the radar equation. It is an analytical model of the receiving-transmitting path and a signal propagation process. Successive changing of its state at certain time intervals simulates the func-tioning dynamics. The model provides a dynamic playout of the input information to the similar output information of a simulated tool. In addition, it provides the ability to simulate an exchange with a con-trol system, has parameters that allow simulating the control of simulated device operation modes. The paper considers the possibilities of a complex mathematical model of an anti-stealth airship ra-dar system.

20. Forecasting time series of infectious morbidity [№2 за 2019 год]
Author: S.A. Tarasova
Visitors: 6524
The paper presents the topicality and the extent of prior investigation of the problem of forecasting in-fectious morbidity of the population. It also proposes one of the methods of forecasting population’s infectious morbidity based on the classical time series decomposition. Typically, the structure of infectious morbidity time series consists of a trend and a seasonal com-ponent with one or two peaks depending on the type of infection, as well as a residual component, which must satisfy the conditions of randomness, independence and normal distribution of levels with a mathematical expectation equal to zero. When these conditions are fulfilled, the classical decomposi-tion methods identify both the long-term tendency of the process development and seasonal changes. The technique assumes algorithmic and analytical alignment of time series, finding seasonal variations as averaged normalized deviations of actual series levels from the trend line. It does not imply a resid-ual component in seasonality indices, which provides more accurate forecasts of deterministic compo-nents of the time series. The algorithm consists of the following stages. At the first stage, moving averages align the time se-ries, which allows reducing a residual component and obtaining a combination of a trend and seasonal component of the time series. The second stage includes generation of a trend equation using the meth-od of least squares. The trend equation reflects a long-term tendency of the dynamics. The third stage includes calculation of seasonality indices, which show the degree of the seasonal time series deviation from the trend. At the fourth stage, the forecasting model is checked for adequacy. At the fifth stage in-cludes forecasting infectious morbidity for future periods based on extrapolation of the trend and tak-ing into account seasonality indices. The study represents an adequate model for forecasting the population’s morbidity of acute respira-tory viral infections in Russia; its verification has shown sufficient accuracy and reliability of further forecasts.

← Preview | 1 | 2 | 3 | Next →