ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Марта 2020

Специалистами ИПМ им. Келдыша РАН и МГУ им. Ломоносова разработан новый метод реконструкции плоских объектов по набору изображений с микроскопа

17.12.2009

Пусть под микроскоп установлен образец с поверхностью, имеющей плоские участки. Требуется оценить параметры плоскостей этих участков. Предполагается, что можно программно управлять фокусировкой микроскопа. Таким образом, имеется возможность получать наборы фотографий с разными положениями глубины резкости. Перед определением положения и ориентации конкретного плоского участка оператор сдвигает образец под микроскопом таким образом, чтобы он был в области видимости камеры. После этого требуется вычислить положение, ориентацию плоскости и единственные данные, которые можно использовать, – это фотографии образца с фиксированной ориентацией, полученные в разных положениях по фокусу.

 Предлагаемый в данной работе метод базируется на идее алгоритмов трехмерной реконструкции по фокусировке (далее – SFF). Как известно, при фотосъемке объектов только часть реальной сцены, которая лежит в пределах глубины резкости, оказывается на фотографии четкой, а та часть, что лежит вне глубины резкости, оказывается размытой. Таким образом, когда в какой-то области изображения видны резкие детали, можно с точностью до глубины резкости сказать, на каком расстоянии от камеры лежит эта область, если известно фокусное расстояние.

 Все методы SFF работают примерно следующим образом. Снимается набор фотографий сцены с разным положением глубины резкости, причем обычно это делается с постоянным шагом. Затем полученные изображения разбиваются регулярной сеткой на набор областей, и по всем областям для всех фотографий считается значение меры резкости. Так как фотографии отличаются друг от друга только положением глубины резкости, области (i, j) на одном изображении соответствует область (i, j) на любом другом изображении из набора. Далее для каждой области ищется фотография, на которой мера резкости максимальна, и фокусное расстояние для этой фотографии принимается за оценку глубины по этой области. Затем по данным, выданным алгоритмами SFF, можно оценить положение плоскости грани с помощью методов математической статистики.

 Подробное описание дается в статье «Реконструкция плоских объектов по изображениям с микроскопа», авторы: Гаганов В.А. (Институт прикладной математики им. М.В. Келдыша РАН, г. Москва), Игнатенко А.В. (Московский государственный университет им. М.В. Ломоносова).