ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2019

В Государственном университете «Дубна», Институте системного анализа и управления исследовался вопрос применения квантового генетического алгоритма для автоматического выбора оптимального типа и вида корреляции в структуре квантового нечеткого логического вывода.

10.07.2019

Известно, что интеллектуальные системы управления (ИСУ) основаны на применении мягких вычислений, нечеткой логики, эволюционных алгоритмов и нейронных сетей. Базисом развития систем управления является пропорционально-интегрально-дифференцирующий (ПИД) регулятор, который применяется в 70 % промышленной автоматики, но зачастую не справляется с задачей управления и совсем плохо работает в непредвиденных ситуациях. Нечеткие регуляторы позволяют частично расширить сферу применения ПИД-регуляторов за счет добавления продукционных логических правил функционирования и частично адаптировать систему. Совместное применение генетических алгоритмов (ГА) и нечеткой нейронной сети позволило полностью адаптировать систему, но для обучения такой системы требуется время, что в нештатных и непредвиденных ситуациях критично. Моделирование оптимального обучающего сигнала дает возможность создать частичную самоорганизацию в системе за счет формирования оптимальных траекторий коэффициентов усиления ПИД-регулятора. Применение квантовых вычислений и, как частный пример, квантового нечеткого вывода (КНВ) позволяет повысить робастность без затрат временного ресурса – в режиме реального времени.

Подробное описание дается в статье «Квантовый генетический алгоритм в задачах моделирования интеллектуального управления и суперкомпьютинг», авторы: Ульянов С.В., Рябов Н.В. (Государственный университет «Дубна», Институт системного анализа и управления, Дубна).