ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Марта 2020

В Пензенском государственном университете архитектуры и строительства рассматривались вопросы аппроксимации встроенными функциями MathCAD результатов решения задач механики деформируемого твердого тела методом конечных разностей.

16.12.2015

Современные информационные технологии на базе программно-математического обеспечения персональных компьютеров позволяют достаточно оперативно, используя численные методы, решать сложные, не поддающиеся аналитическому решению задачи из различных областей науки и техники, в частности, из области механики деформируемого твердого тела. В настоящее время для решения задач механики деформируемого твердого тела наибольшее распространение получили два метода: метод конечных разностей и метод конечных элементов.

Метод конечных разностей – это численный метод решения дифференциальных уравнений, в основе которого лежит замена производных в дифференциальных уравнениях и соответствующих краевых условиях конечно-разностными операторами. В результате решение краевой задачи или задачи Коши сводится к решению системы конечно-разностных уравнений, а само решение представляется значениями искомых функций (перемещений или напряжений) в дискретном множестве узлов сетки, на которую разбивают область решения. Метод конечных элементов – это также численный метод решения дифференциальных и интегральных уравнений, в основе которого лежит разбиение области решения на конечные элементы произвольных размеров, но, как правило, одной формы. Искомая функция (например функция перемещений) внутри конечного элемента аппроксимируется, как правило, полиномом, коэффициенты которого выражаются через значения искомой функции в вершинах конечных элементов. В итоге решение задачи сводится к решению системы линейных алгебраических уравнений относительно значений искомой функции в узлах – вершинах совокупности конечных элементов, покрывающих расчетную область.

Подробное описание дается в статье «Расчет конструкций методом конечных разностей с использованием аппроксимирующих функций mathcad», автор Бакушев С.В. (Пензенский государственный университет архитектуры и строительства, Пенза).