ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2019

В Смоленском филиале Национального исследовательского университета МЭИ рассмотрены методы поддержки принятия решений по управлению сложными производственными проектами машиностроения, основанные на анализе прогнозной результативности проектов.

25.11.2015

По уровню производства и экспорта наукоемкой промышленной продукции Россия отстает от таких мировых лидеров, как Китай, США, Япония и страны Евросоюза. По данным Организации Объединенных Наций по промышленному развитию (UNIDO), доля наукоемкой промышленной продукции в РФ составляет менее 20 % от суммарного объема промышленной продукции. В решении задачи увеличения выпуска наукоемкой продукции важная роль отводится повышению инновационной активности машиностроения, в том числе в связи с влиянием машиностроительной продукции на формирование технологического уровня других видов промышленного производства.

Несмотря на наметившиеся успехи в некоторых видах машиностроительного производства (производство летательных аппаратов, станков, оборудования для химической и нефтехимической отраслей), общий уровень наукоемкости отечественного машиностроения остается невысоким. Сложившаяся ситуация в значительной степени обусловлена длительностью создания новой наукоемкой продукции и неопределенностью информации, необходимой для управления производственной системой машиностроительного предприятия при реализации подобных проектов.

Для многих российских машиностроительных предприятий производство наукоемкой продукции является единичным или мелкосерийным, что вызывает большие временные затраты на сбор информации в процессе разработки и подготовки производства и ее высокую неопределенность, учет которой требует использования методов искусственного интеллекта для решения различных задач поддержки принятия решений.

Подробное описание дается в статье «Информационно-аналитическая система управления производственными проектами машиностроения в условиях неопределенности», авторы: Дли М.И., Стоянова О.В. (Смоленский филиал Национального исследовательского университета МЭИ, г. Смоленск).