ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Марта 2020

В Донском государственном техническом университете сделан обзор современного состояния, относительно нового класса, биоинспирированных алгоритмов – искусственных иммунных систем.

28.01.2015

В процессе развития вычислительной техники все актуальнее становится проблема оптимизации задач, относящихся к классу NP-проблем. Так как вычислительные мощности растут линейно в зависимости от времени (в соответствии с законом Мура количество транзисторов на кристалле увеличивается вдвое), широкий спектр оптимизационных задач можно решить путем разработки новых эффективных алгоритмов и методов. Эти задачи характеризуются нелинейностью, недифференцируемостью, многоэкстремальностью, овражностью, отсутствием аналитического выражения, сложной топологией области допустимых значений, высокой вычислительной сложностью оптимизируемых функций, высокой размерностью пространства поиска и т.п.

Зачастую методы, используемые для решения таких задач, являются эвристическими: не гарантируют нахождение оптимального решения, но позволяют достаточно быстро получать решения приемлемого качества. В последнее десятилетие довольно большое число методов исследований эвристических алгоритмов берут свое начало в природных системах: например, методы муравьиных колоний, роевого интеллекта, искусственных нейронных сетей, имитации отжига, эво люционные алгоритмы и т.д. В зарубежных и отечественных публикациях рассматриваются множественные применения таких методов.

Подробное описание дается в статье «Искусственные иммунные системы: обзор и современное состояние», авторы: Чернышев Ю.О., Григорьев Г.В., Венцов Н.Н. (Донской государственный технический университет, Ростов-на-Дону).