ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Марта 2020

В Международном университете природы, общества и человека Дубна» исследуются методы и возможности проектирования баз знаний на основе моделей интеллектуальной системы управления в автономном и дистанционно управляемом режимах (по кабелю и Wi-Fi) на примере физического динамически неустойчивого объекта типа «каретка – перевернутый маятник» (типовой Benchmark).

25.02.2014

Использование оптимизатора баз знаний позволяет уменьшить время проектирования интеллектуальной системы управления (ИСУ), повысить робастность и устранить субъективизм при формировании БЗ нечеткого регулятора (НР). Управление неустойчивым динамическим объектом типа «каретка – перевернутый маятник» является одной из типовых задач в теории управления, так как ее решение наглядно демонстрирует качество САУ. Задача управления состоит в том, чтобы, воздействуя с помощью силы управления на тележку, удерживать маятник в вертикальном положении (угол отклонения оси маятника от вертикали близок к 0) в условиях изменения условий среды функционирования.
Такая задача часто решается с использованием традиционной САУ на основе пропорционально-интегрально-дифференциального регулятора (ПИД-регулятора) в контуре управления. Если коэффициенты усиления регулятора являются постоянными величинами, то система управления не обеспечивает достаточной робастности. В этом случае система неспособна функционировать в нештатных и непредвиденных ситуациях и демонстрирует недостаточную эффективность управления.
Обычно настройка регуляторов сопровождается большим количеством экспериментов и множеством осложнений, связанных с неопределенностью некоторых параметров системы, наличием помех в каналах измерения и системе управления. Во многих работах отражена возможность использования различных интеллектуальных методов – нейронных сетей и генетических алгоритмов.

Подробное описание дается в статье «Технологии мягких вычислений в интеллектуальном управлении», авторы: Ульянов С.В., Керимов Т.А., Решетников А.Г., Бархатова И.А. (Международный университет природы, общества и человека «Дубна», Дубна).