ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2018 г.)
2-летний импакт-фактор РИНЦ: 0,678
2-летний импакт-фактор РИНЦ без самоцитирования: 0,541
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 1,047
5-летний импакт-фактор РИНЦ: 0,460
5-летний импакт-фактор РИНЦ без самоцитирования: 0,389
Суммарное число цитирований журнала в РИНЦ: 7170
Пятилетний индекс Херфиндаля по цитирующим журналам: 310
Индекс Херфиндаля по организациям авторов: 412
Десятилетний индекс Хирша: 19
Место в общем рейтинге SCIENCE INDEX за 2018 год: 303
Место в рейтинге SCIENCE INDEX за 2018 год по тематике "Автоматика. Вычислительная техника": 10

Больше данных по публикационной активности нашего журнале за 2008-2018 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Марта 2020

В Южном федеральном университете совместно с Ростовским государственным строительным университетом предложен гибридный алгоритм, основанный на последовательном использовании градиентных методов и генетического алгоритма

20.03.2013

Обучение искусственной нейронной сети (ИНС) может рассматриваться как задача оптимизации, при этом основная проблема заключается в выборе наиболее подходящего оптимизационного метода. Выбор в пользу градиентных методов обоснован тем, что, как правило, в задачах обучения ИНС целевую функцию можно выразить в виде дифференцируемой функции от всех весовых коэффициентов. Однако сложный характер зависимости от весовых коэффициентов приводит к тому, что целевая функция имеет локальные экстремумы и седловые точки, что делает применение градиентных методов не всегда обоснованным. Для решения задач оптимизации с многоэкстремальным критерием используют методы случайного поиска, к которым относятся генетические алгоритмы. Однако генетические алгоритмы обычно отличаются медленной сходимостью. Большего успеха можно достигнуть, используя в одном алгоритме обучения и градиентные, и генетические методы. Неопределенность выбора метода обучения обусловлена широким классом градиентных и генетических алгоритмов. В автоматизированных системах нейро-сетевого программирования следует стремиться к сокращению неопределенности. В статье рассматривается параметризация алгоритмов обучения с целью сокращения неопределенности выбора и предлагается соответствующее ПО.

Общий анализ градиентных методов обучения нейронных сетей позволяет утверждать, что любой из этих методов можно представить как частный случай адаптивного алгоритма.

Подробное описание дается в статье «Алгоритм и программная реализация гибридного метода обучения искусственных нейронных сетей», авторы: Белявский Г.И. (Южный федеральный университет, г. Ростов-на-Дону), Лила В.Б., Пучков Е.В. (Ростовский государственный строительный университет, г. Ростов-на-Дону).