На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2024

Статьи из выпуска № 3 за 2012 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам

1. Алгоритмы оптимизации непрерывного процесса биосинтеза молочной кислоты [№3 за 2012 год]
Авторы: Гордеев Л.С., Гордеева Ю.Л., Ивашкин Ю.А.
Просмотров: 12240
Получены соотношения для расчета показателей непрерывного процесса биосинтеза молочной кислоты. В основе соотношений лежит математическая модель непрерывного процесса синтеза в ферментёре с перемешиванием. Особенность модели заключается в том, что для каждого компонента (субстрата, биомассы и продукта) записывается свое выражение для удельной скорости. В качестве критерия оптимальности используется продуктивность Qp по целевому продукту (молочной кислоте). При решении оптимальной задачи сначала оцениваются скорость протока D и концентрация субстрата в выходном потоке, а затем рассчитывается концентрация субстрата Sf на входе в аппарат. Эти показатели обеспечивают максимум продуктивности. Полученные соотношения использованы для разработки алгоритмов оптимизации непрерывного процесса биосинтеза молочной кислоты. Рассмотрены три варианта постановки задачи: 1) в отсутствие ограничений по концентрации субстрата в поступающем потоке и по величине протока; 2) при максимально возможной концентрации субстрата в поступающем потоке и заданной величине протока; 3) при ограничении на скорость протока. Во втором варианте определяется концентрация субстрата в поступающем потоке для оптимальных условий, в третьем – величина протока. Во втором алгоритме предусмотрены проверка правильности задания величины протока и возможность корректировки. Результаты численных расчетов показали, что наибольшее значение продуктивности достигается для первого варианта: Qp=12,42 г/(лч) Sf=46,8 г/л и D=0,5 ч–1, в то время как продуктивность по второму варианту Qp=7,85 г/(лч) при Sf=30,39 г/л и D=0,8 ч–1, а по третьему – Qp=12,23 г/(лч) при Sf=60 г/л и D=0,5 ч–1.

2. Математическая модель пользовательской сети-на-кристалле [№3 за 2012 год]
Авторы: Мосин С.Г., Хассан Мд Муид, Тухтамирзаев А.Ю.
Просмотров: 7934
Развитие микроэлектроники обеспечило возможность реализации сложных электронных систем в интегральном исполнении. При разработке этих систем выбирают такие САПР, интегральные технологии и маршруты проектиро-вания, которые позволят сократить сроки проектирования, повысить надежность и качество получаемого решения. Для повышения эффективности процесса проектирования предлагаются различные методологии, например, система на кристалле (SoC – system on a chip), система в корпусе (SiP – system in a package), многокристальные модульные системы (MCM – multi chip module) и др. Для проектирования сложных мультипроцессорных систем на кристалле (MPSoC – Multiprocessors System on a Chip) была предложена технология «Сеть-на-кристалле» (NoC – network on a chip). Архитектуры специализированных приложений MPSoC включают многочисленные однородные вычислительные ядра и модули памяти. Каждое ядро обеспечивает ограниченный набор прикладных функциональных возможностей. Для таких проектов можно представить однозначные схемы межъядерной коммуникации. Технологию NoC используют при проектировании для построения коммуникационной среды, обеспечивающей взаимодействие модулей системы. NoC состоит из маршрутизаторов, физически связанных друг с другом. Каждое вычислительное ядро и модули памяти подключены к NoC через интерфейс ресурса к сети (RNI-interface). В общем случае технология NoC предполагает использование однородной топологии – решетки, которая обеспечивает подключение к каждому ком-мутатору одинакового числа ядер, образующих домен. Домены системы взаимодействуют и представляют регулярную структуру. Альтернативным решением является использование неоднородной топологии, что предполагает учет на этапе проектирования специфических особенностей ядер разрабатываемой системы. Выбор количества маршру-тизаторов и способа коммутации выполняют с целью минимизации задержки сигналов, площади кристалла и уровня энергопотребления. Использование неоднородной топологии ориентировано на проектирование специализированных приложений, обладающих минимальной универсальностью. Предложена математическая модель пользовательской сети-на-кристалле (NoC). Приведен алгоритм поиска кратчайшего пути в графе. Представлены полученные результаты работы алгоритма для оптимизации топологии NoC.

3. Самарская школа профессора С.А. Прохорова по прикладному анализу случайных процессов [№3 за 2012 год]
Авторы: Иващенко А.В., Куликовских И.М.
Просмотров: 7404
Описываются основные результаты работы кафедры информационных систем и технологий Самарского госу-дарственного аэрокосмического университета под руководством профессора С.А. Прохорова в области прикладного анализа случайных процессов, временных рядов и потоков событий. Выделена проблема и описаны главные этапы аппроксимативного анализа вероятностных характеристик для произвольной вероятностной характеристики, для корреляционно-спектрального анализа и для взаимного корреляционно-спектрального анализа. Указаны результаты, полученные в ходе исследований в области разработки технологии и ПО автоматизированных систем прикладного анализа случайных процессов, содержащие математическое описание, методы и алгоритмы моделирования случайных процессов, потоков событий и неэквидистантных временных рядов; методы и алгоритмы анализа законов рас-пределения, характеристических функций, корреляционно-спектральных функций, структурных функций; решение задач вторичной обработки временных рядов, включающих идентификацию случайных процессов по виду функцио-нальной характеристики, аппроксимацию законов распределения, характеристических, корреляционных, структурных функций, спектральных плотностей мощности параметрическими моделями, представляющими собой как функции заданного вида, так и ортогональные функции экспоненциального типа. Приведено описание функциональности комплекса автоматизированных систем, позволяющих решать разнообразные прикладные задачи анализа случайных процессов и временных рядов. Даны также примеры реальных задач, при решении которых использовались указанные методы и алгоритмы прикладного анализа случайных процессов: в физике, акустике, океанологии, медицине, машиностроении и в других областях, где необходима обработка случайных процессов с различными ха-рактеристиками.

4. Templet – метод процессно-ориентированного моделирования параллелизма [№3 за 2012 год]
Автор: Востокин С.В.
Просмотров: 13601
Представлена новая методология моделирования параллельных процессов TEMPLET, разрабатываемая автором на кафедре информационных систем и технологий Самарского государственного аэрокосмического университета. Рассмотрена усовершенствованная версия нотации, позволяющая: описывать протоколы взаимодействия процессов в виде последовательности передаваемых сообщений; представлять логику работы процессов посредством процедур, обрабатывающих сообщения; визуализировать процессы и их взаимодействие при помощи аннотированных графов. Метод моделирования предназначен для описания систем с внутренним параллелизмом на основе процессного под-хода. Особое внимание уделяется следующим аспектам методологии: способ декомпозиции процессов на процедуры обработки сообщений, описание протоколов взаимодействия процессов в виде конечных автоматов, графическая но-тация для визуализации модели процессов, подробное описание правил для передачи динамики модели. В качестве иллюстрации приведен пример простейшей системы процессов типа «разветвление–слияние». Рассмотрены цели проектирования. Показана диаграмма верхнего уровня, описывающая композицию процессов и используемые в ней пиктографические элементы. Дается анализ примеров для объектов, составляющих диаграмму композиции процессов. Рассматриваются диаграммы коммуникационных объектов – каналы, диаграммы объектов, обрабатывающих сообщения, процессы. Кратко описаны программные средства поддержки методологии моделирования TEMPLET, дается ссылка на источники с примерами ее применения. Также предлагается ссылка на сайт исследовательского проекта, посвященного данной методологии, где размещены программные средства ее поддержки.

5. Применение комплекса параллельного программирования Graphplus templet в моделировании [№3 за 2012 год]
Авторы: Востокин С.В., Литвинов В.Г., Хайрутдинов А.Р.
Просмотров: 9612
Представлена программная реализация инструментария параллельного программирования Graphplus templet, ав-томатизирующего разработку параллельных программ для многопроцессорных рабочих станций и суперкомпьютеров. Данная разработка ведется с 2004 года на кафедре информационных систем и технологий Самарского государ-ственного аэрокосмического университета в рамках исследовательского проекта «Граф Плюс» (graphplus.ssau.ru). В статье развивается подход, позволяющий расширить и упростить применение высокопроизводительной вычисли-тельной техники в численном моделировании. Ключевыми концепциями данного подхода являются применение ти-повых решений (паттернов) параллельного программирования, автоматическое распараллеливание и развертывание кода в различных программно-аппаратных архитектурах, разделение ролей системный программист – прикладной программист, использование интегрированных сред разработки и методов визуализации кода. Подход основан на ав-торской методологии проектирования параллельных процессов – TEMPLET-методологии. Описана структура новой версии программного комплекса автоматизации параллельного программирования Graphplus templet. Детально рас-смотрены принцип функционирования транслятора графических моделей программ, исходные и выходные данные транслятора, его интеграция со средой MS Visual Studio. Показано применение программного комплекса для решения задач нелинейной динамики и компьютерной оптики. Приведены показатели эффективности сгенерированных в нем программ при исполнении на многопроцессорных рабочих станциях под управлением MS Windows и суперкомпьютере «Сергей Королев» Самарского государственного аэрокосмического университета, работающего под управлением Linux.

6. Управление взаимодействием персонала предприятия в многоакторной интегрированной информационной среде [№3 за 2012 год]
Автор: Иващенко А.В.
Просмотров: 10141
Описывается механизм информационного управления согласованным взаимодействием персонала научно-производственного предприятия в интегрированной информационной среде на основе результатов взаимного интер-вально-корреляционного анализа ритмичности обмена сообщениями. Предлагается технология анализа организаци-онной структуры предприятия для исследования совместного влияния фактора времени и человеческого фактора на процесс взаимодействия по выработке и согласованию решений пользователями интегрированной информационной среды. Приводится модель взаимодействия в многоакторной интегрированной информационной среде предприятия, позволяющая реализовывать стратегии информационного управления взаимодействием ее пользователей с учетом человеческого фактора, и предлагается формализация задачи распределения информационных объектов между акто-рами в виде задачи о назначениях. Вводится коэффициент релевантности, с помощью которого определяется соот-ветствие между информационными объектами и интересами акторов, формализованными в виде облаков тегов, и ко-эффициент ритмичности, позволяющий исследовать потоки обмена информацией между участниками процесса при-нятия решений. Показано, что пользователи интегрированной информационной среды научно-производственного предприятия представляют собой социальную сеть. Это дает возможность исследовать новые свойства процессов взаимодействия персонала предприятия в едином информационном пространстве. Предлагается структура системы управления взаимодействием персонала научно-производственного предприятия в интегрированной информационной среде. Приводится пример, иллюстрирующий реализацию описанного подхода, которая позволила обеспечить работоспособность автоматизированных интеллектуальных систем управления распределением производственных ресурсов в режиме реального времени.

7. Решение систем полиномиальных уравнений на ЭВМ [№3 за 2012 год]
Автор: Лёзин И.А.
Просмотров: 10012
Предложен ускоренный алгоритм поиска базисов Грёбнера, используемых при решении систем полиномиальных уравнений. Данный алгоритм рассматривает проблему переполнения разрядной сетки и некорректных вычислений при проведении расчетов на ЭВМ. Классический алгоритм Бухбергера и обновленный алгоритм Фужера требуют большего числа шагов, при этом не содержат дополнительных действий по коррекции вычислений чисел с плавающей запятой, что приводит к ошибкам и неверному вычислению корней системы уравнений для иррациональных коэффициентов. Новый алгоритм в несколько раз уменьшает количество операций редукции числа полиномов, не хранит все возможные пары полиномов и не проверяет их на то, что один может быть выражен через другой. Предложенный в статье алгоритм оперирует только тем количеством полиномов, которые в данный момент представляют собой базис. Базис расширяется, если ни один из его полиномов не может быть представлен в виде комбинации других полиномов базиса. В противном случае лишний полином удаляется из базиса, что позволяет избежать чрезмерного разрастания базиса и лишних операций с этим полиномом. Чтобы избежать проблем некорректных вычислений из-за разрядной сетки компьютера, алгоритм предусматривает постпроверку. Если какой-либо полином редуцируется, то исходный полином должен быть представлен комбинацией редуцированного полинома и остальных полиномов базиса. Если значения коэффициентов одинаковых мономов после этого не совпадают, коэффициенты редуцированного полинома требуют коррекции на величину ошибки.

8. Исследование аппроксимативных возможностей радиально-базисной сети с ортогональными полиномами [№3 за 2012 год]
Автор: Лёзина И.В.
Просмотров: 7854
Описывается постановка задачи аппроксимации, обосновывается возможность использования в качестве аппрок-симатора плотности распределения вероятности радиально-базисной нейронной сети, приводятся аппроксимирующее выражение для данной сети и выражение для целевой функции, с помощью которой происходит подбор параметров базисных функций и значений весов. Рассматривается возможность использования при аппроксимации плотности распределения вероятности радиально-базисной сетью не только традиционных функций Гаусса, но и сигмоидальных и степенных функций и ортогональных полиномов Лежандра, Чебышева I и II рода, Лагерра и Эрмита. Приводятся соответствующие формулы. Сравниваются погрешности аппроксимации путем вычисления среднего квадратического отклонения. В качестве примеров приводится аппроксимация плотности вероятности Симпсона и Рэлея радиально-базисной сетью c сигмоидальными, степенными функциями, а также полиномами Лежандра, Чебышева I и II рода, Лагерра и Эрмита. Дается рекомендация по использованию радиально-базисной сети с полиномами Лежандра, Чебышева I и II рода в качестве базисных функций при увеличении числа нейронов в скрытом слое, так как такая сеть позволяет достичь более низких значений среднего квадратического отклонения, чем сеть с традиционными функциями Гаусса.

9. Многофункциональный имитатор нейронных сетей [№3 за 2012 год]
Автор: Солдатова О.П.
Просмотров: 13794
Описывается нейроимитатор, реализующий модели многослойного персептрона, радиально-базисных сетей и нечетких нейронных сетей. Исследована эффективность использования нейроимитатора для решения задач класси-фикации и прогнозирования. Уделено внимание разбору гибридных моделей нейронных сетей и систем нечеткого вывода, основанных на продукционных правилах «если – то». Рассмотрены базы знаний в системе нечеткого вывода Мамдани–Заде, модели нечеткого вывода TSK, модели Цукамото, модели нечеткой продукционной сети Ванга–Менделя. На основе указанных моделей реализован программный комплекс, позволяющий проверить точность вы-числений при решении задач классификации и прогнозирования. Сравнение результатов проводилось на одних и тех же данных в нескольких сериях с разными значениями параметров нейронных сетей, чтобы выявить среднюю величину погрешности на каждом из типов задач. Сравнение точности полученного результата осуществлялось по значениям функции ошибки, среднеквадратической и приведенной погрешностям. При решении задач классификации наилучшие результаты показали сети Ванга–Менделя и TSK. При исследовании эффективности решения задачи прогнозирования наилучшие результаты показали сети, реализующие модели Мамдани–Заде и Цукамото. Подобный пример наглядно демонстрирует, что невозможно выбрать одну оптимальную модель и что для задач разных классов нужно использовать разные модели, наиболее подходящие под условия конкретной задачи.

10. Автоматизация системы управления национальным исследовательским университетом и мониторинга его деятельности [№3 за 2012 год]
Авторы: Еленев Д.В., Кузьмичев В.С., Пашков Д.Е.
Просмотров: 12722
Решается задача построения интегрированной автоматизированной информационной системы управления уни-верситетом и информационно-аналитической системы мониторинга деятельности подразделений и количественной оценки качества результатов работы университета. Назначением первой из них является автоматизация системы управления вузом на основе создания единой интегрированной базы данных, а ее развитие ведется путем внедрения и организации совместной работы специализированных программных продуктов для реализации различных бизнес-функций. Внедрение интегрированной автоматизированной информационной системы управления университетом позволило существенно улучшить управленческий учет в университете, ввести ряд бизнес-процессов в правовое поле, более акцентированно сформировать точки ответственности исполнителей, упорядочить внутреннюю структуру и минимизировать количество выходных документов, существенно сократить сроки по структурному анализу пока-зателей деятельности вуза и работе с внешними организациями. Система мониторинга деятельности подразделений и количественной оценки качества результатов работы университета предназначена для повышения эффективности системы менеджмента и качества работы подразделений университета и решает следующие задачи: повышение эф-фективности мониторинга образовательного и научно-исследовательского процессов на основе систематического измерения их показателей; совершенствование системы поддержки и сопровождения управленческих решений на основе мониторинга показателей эффективности и результативности деятельности вуза; обеспечение информационной поддержки системы менеджмента качества; совершенствование системы оплаты труда на основе мониторинга показателей качества; повышение достоверности внутренних и внешних отчетных данных. Системы реализованы в Самарском государственном аэрокосмическом университете имени академика С.П. Королева (национальном иссле-довательском университете) работниками кафедры информационных систем и технологий и управления информати-зации и телекоммуникаций.

| 1 | 2 | 3 | 4 | 5 | 6 | Следующая →