На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
17 Июня 2024

Статьи из выпуска № 3 за 2019 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам

1. Методы обработки данных магнитно-резонансной томографии для когнитивной визуализации и трекинга областей интереса [№3 за 2019 год]
Авторы: Фраленко В.П., Шустова М.В., Хачумов М.В.
Просмотров: 6134
На настоящее время разработано большое количество алгоритмических и программных средств обработки и визуализации данных магнитно-резонансной томографии (МРТ), решающих различные задачи сегментации, анализа изображений, моделирования и др. Однако до сих пор существует ряд проблем: отсутствие инструментов для автоматизированного высокоточного по-иска в данных МРТ целевых объектов и областей интереса (в интерактивном режиме работы), трудности оперативного анализа большого объема динамически изменяющихся параметров исследуемых объектов, необходимость в улучшении оснащенности исследователей за счет создания новой инструментальной базы и средств обработки данных МРТ. Кроме того, некоторые направления биомедицинских исследований требуют наличия узкоспециализированных инструментов обработки и анализа данных МРТ. Одним из таких направлений является изучение свойств мезенхимальных стволовых клеток, трансплантированных в мозг, пораженный ишемическим инсультом. Основной целью настоящего исследования является создание методов интеллектуального автоматического анализа данных МРТ для поддержки врачей, занимающихся изучением зон ишемического поражения и особенностей движения трансплантированных мезенхимальных стволовых клеток в мозге лабораторных животных. Эти методы позволяют автоматически обнаруживать и визуализировать области интереса в головном мозге. 2D- и 3D-визуализация дают возможность смоделировать во времени процесс за-рождения и развития зон интереса. Методы и алгоритмы опираются на обработку DICOM-файлов, получаемых при сканировании головного мозга реципиентов (лабораторных крыс) в режимах T2 (для обнаружения ишемического поражения) и SWI (для обнаружения скоплений мезенхимальных стволовых клеток). Для изучения процессов миграции и хоуминга стволовых клеток был применен метод Coherent Point Drift. Разработанные алгоритмы положены в основу программного комплекса, предназначенного для экспертной поддержки принятия решений исследователей. Функционал комплекса позволяет автоматически выделять области интереса на снимках МРТ и вычислять их информативные параметры.

2. Разработка базы данных и конвертера для извлечения и анализа специализированных данных, получаемых с медицинского аппарата [№3 за 2019 год]
Авторы: Еремеев А.П., Ивлиев С.А.
Просмотров: 7013
При разработке экспертных систем могут возникнуть затруднения, связанные с используемыми форматами хранения или обмена данными. Возможны ситуации, когда данные хранятся в закрытом формате либо закрытый формат имеют файлы обмена для таких систем. Это затрудняет автоматический анализ данных, поскольку приходится заносить их в экспертную систему вручную. Однако существуют методы, позволяющие преобразовывать данные в удобный для работы формат. В статье рассматривается анализ двоичных файлов базы данных медицинского аппарата для исследования сложных патологий зрения с целью извлечения из нее данных биофизических исследований для последующего анализа. Поскольку в стандартном программном обеспечении отсутствуют возможности обмена информацией с внешними системами в открытых форматах, требуется разработка дополнительных методов и программных средств для определения физической структуры данных для последующего конвертирования в открытый формат. Исходными данными для анализа являются информация о данных, хранящихся в базе данных медицинского аппарата, а также общие принципы физического представления данных в компьютерных системах. После определения структуры файлов с данными выполняется разработка конвертера. Выходные файлы конвертера могут быть использованы в дальнейшем при обучении нейронных сетей. Такой подход позволяет достаточно быстро создавать базу образцов (прецедентов), исключив необходимость ручного переноса данных, и может служить основой для анализа данных в других подобных ситуациях.

3. Реконструкция текстурированной модели городского пространства по топографическому плану и фотоснимкам [№3 за 2019 год]
Авторы: Кудряшов А.П., Соловьев И.В.
Просмотров: 4637
В задачах реконструкции сцен городского пространства в качестве источника данных могут использоваться различные материалы: спутниковые снимки, видеоряд, данные оптических систем и др. В работе предлагается для реконструкции объемной модели городского пространства использовать метод распознавания служебной информации на топографическом плане. Топографические планы являются основными исходными данными на всех этапах архитектурно-планировочного и инженерного проектирования. Они содержат информацию о геометрии оснований зданий и их положении среди других объектов. Для распознавания используется модифицированный волновой алгоритм, позволяющий выделить и распознать на изображении замкнутые контуры, которые затем классифицируются на различные объекты: контуры зданий, надписи, служебные символы и др. Дается обоснование преимуществ рассматриваемого алгоритма для выделения контуров. Предлагается метод нанесения текстур на трехмерные модели зданий. Текстуры получены с фотоснимков реальных зданий. Предлагается использование специальных текстур для определенных типов строений в случаях, когда реальный фотоснимок здания будет отсутствовать. Фото-снимки привязываются к топографическому плану с помощью географических координат. Описан метод привязки реконструированных объектов к рельефу. Представляется информационная система, которая используется как для всего процесса реконструкции, так и для решения отдельных локальных задач. Примеры реконструкции реальных топографических планов масштаба 1:2000 приводятся в качестве доказательства эффективности предложенного подхода.

4. О подходе к моделированию линейных объектов как источников чрезвычайных ситуаций техногенного характера [№3 за 2019 год]
Авторы: Рыбаков А.В., Иванов Е.В., Видрашку И.А., Хатухов Т.Б.
Просмотров: 4975
Проблема эффективного и оперативного реагирования на чрезвычайные ситуации, а также оптимального расчета необходимых сил и средств на их ликвидацию в последнее время приобрела особую остроту в связи с недостаточно эффективным уровнем планирования реагирования на чрезвычайные ситуации. В данной статье предлагается возможное решение проблемы прогнозирования зон чрезвычайных ситуаций и динамики их изменения во времени с помощью интерактивной системы моделирования чрезвычайных ситуаций с использованием карт местности. В работе представлен новый подход к разработке серверной и клиентской частей интерактивной системы поддержки принятия решений по предупреждению и ликвидации чрезвычайных ситуаций. На примере газопровода раскрывается механизм обработки линейного объекта и моделирования аварийной ситуации, связанной с нарушением его целостности. Назван перечень исходных данных, необходимых для расчета зон, подвергающихся непосредственной опасности. Результатом расчета является набор данных, на основе которого можно сделать оценку сил и средств, необходимых для устранения последствий чрезвычайной ситуации. Приведено краткое описание реализации системы моделирования различных чрезвычайных ситуаций, позволяющей визуализировать зоны поражения, на картографической основе. Представлен алгоритм работы системы с разделением на этапы работы клиентской стороны системы и серверной стороны в порядке их выполнения. Также дано описание структуры интерактивной системы и используемых инструментов, в качестве примера приведены варианты их применения.

5. Методика оценки эффективности вариантов построения системы энергосберегающего управления многомерным технологическим объектом [№3 за 2019 год]
Authors: D.Yu. Muromtsev, A.N. Gribkov, V.N. Shamkin, I.V. Tyurin
Просмотров: 5570
В статье представлена методика выбора наиболее оптимального варианта системы энергосберегающего управления сложным технологическим объектом, которую удобно использовать в зада-чах структурного синтеза. Проектирование системы управления представляет собой совокупность взаимосвязанных операций, направленных на достижение конкретного результата. Особенностями таких проектов являются наличие неопределенностей и рисков, большие затраты, многоэтапность и значительное время выполнения работ, командный состав исполнителей, невозможность гарантированного получения ожидаемого результата. На выбор методологии и стратегии управления проектом оказывают влияние вид объекта и цели выполнения проекта, характер неопределенностей и рисков, возможность использования информационных технологий и параллельного проектирования. Как риск проекта, так и затраты на проектирование зависят от числа рассматриваемых альтернативных вариантов на стадиях проектирования. Поэтому для управления проектами необходимо использовать модели процесса проектирования, учитывающие число вариантов и их эффективность на каждом этапе проектных работ. В целом процесс проектирования можно описать функциональной моделью в формате IDEF0, дополненной узлами принятия решений. Основу методики оценки эффективности альтернативных вариантов составляет метод динами-ческой вариантности, суть которого в том, что на каждом этапе проектирования формируется группа разнообразных вариантов, которые начинают разрабатываться параллельно. После каждого этапа производится экспертиза и принимается решение о значимости отдельных вариантов в составе группы. В качестве примера в статье рассмотрено применение метода динамической вариантности для разработки системы управления прецизионной шестисекционной печью, используемой для термической обработки заготовок терморезисторов в воздушной среде, которая с точки зрения управления является типичным многомерным объектом, имеющим сложные взаимосвязи между входом, выходом и внутренними участками зон.

6. Модель двойной пористости для изучения разработки трещиновато-пористых коллекторов на базе концепции суперэлементов [№3 за 2019 год]
Авторы: Афанаскин И.В., Вольпин С.Г., Родителев А.В., Колеватов А.А.
Просмотров: 6526
Основной технологией разработки нефтяных месторождений в России является заводнение (закачка в нефтяной пласт воды для вытеснения нефти и поддержания пластового давления). При этом большая часть нефтяных месторождений нашей страны находится на 3-й или 4-й стадии раз-работки, что означает высокую обводненность добываемой жидкости (90 % и более). Основная задача специалистов по разработке нефтяных месторождений – уменьшить добычу воды и (по возможности) увеличить добычу нефти. В этих условиях много внимания уделяется контролю и регулированию разработки нефтяных месторождений. Для выполнения этих работ специалистам необходим инструмент, позволяющий быстро строить модели значительных по размерам месторождений и оперативно рассчитывать большое количество сценариев для проверки гипотез о геологическом строении, адаптации модели и решения задач оптимизации разработки. Наиболее актуально это для трещиновато-пористых коллекторов, поскольку они характеризуются высокой неоднородностью фильтрационно-емкостных свойств. Это провоцирует опережающее обводнение добывающих скважин, что препятствует достижению проектных показателей разработки месторождений. Предлагается методика численного математического моделирования разработки нефтяных месторождений в карбонатных трещиновато-поровых коллекторах на базе концепции суперэлементов. Фильтрация двухфазная, применена концепция двойной пористости. Численная схема полностью явная. Система уравнений сохранения аппроксимирована по пространству на суперэлементной сетке. Это позволяет существенно увеличить скорость вычислений и упростить построение моделей (так как размер ячеек сопоставим с расстоянием между скважинами). Для корректных расчетов необходима адаптация на историю разработки. Предлагаемая методика тестируется на модели реального месторождения, результаты расчетов сравниваются с расчетами на коммерческом симуляторе Rubis Kappa Engineering. Получены хорошее совпадение на этапе обучения модели и удовлетворительное совпадение результатов прогнозных расчетов.

7. Информационная поддержка принятия решений при возникновении аварийной ситуации на объектах газопровода на основе продукционных правил [№3 за 2019 год]
Авторы: Христодуло О.И., Самойлов А.С.
Просмотров: 4915
Обеспечение газом промышленных предприятий осуществляется специализированными организациями с помощью совокупности комплексов иерархически и территориально распределенных объектов, которые взаимосвязаны между собой на региональном уровне, но в то же время являются частью системы обеспечения газом федерального уровня. Процесс обеспечения газом промышленных предприятий связан с обработкой информации об объектах, специфика которой заключается в важной роли пространственной составляющей. В статье проведен анализ проблемы обеспечения газом промышленных предприятий. Рассмотрены особенности информации и пространственных объектов, использующихся в процессе обеспечения газом. Обоснована необходимость использования геоинформационной системы для под-держания в актуальном состоянии, обработки, анализа, контроля целостности и непротиворечивости информации о пространственных объектах газораспределительной организации. Приведены пространственная информация об объектах обеспечения газом промышленных предприятий (газораспределительные станции, газопроводы высокого и среднего давления, запорная арматура, пункты редуцирования газа, места возможных возникновений аварий и прочее), основные характеристики этих объектов. Кроме того, описаны продукционные правила, составленные на основе формализованных знаний экспертов и описывающие действия диспетчера при возникновении аварийной ситуации на газопроводе. Представлена схема использования базы знаний на основе продукционных правил для информационной поддержки принятия решений при возникновении аварийной ситуации. Информационная поддержка принятия решений по локализации аварийной ситуации на объектах обеспечения газом промышленных предприятий основывается на использовании пространственной информации об объектах непосредственно из распределенной базы пространственных данных. Анализ данных с помощью формализованных экспертных знаний позволяет моделировать аварийную ситуацию, рассчитывать объем запаса газа в трубопроводе и формировать необходимые отчеты.

8. Концепция автоматизации научных исследований живучести системы добычи газа в условиях обводнения скважин [№3 за 2019 год]
Авторы: Соловьев Н.А., Валеев А.Ф.
Просмотров: 4042
Разработка газоконденсатных месторождений на этапе падающей добычи характеризуется по-явлением различных неблагоприятных воздействий, не регламентированных проектными условиями нормальной эксплуатаци. Одним из основных неблагоприятных воздействий является обводнение скважин, ухудшающее проницаемость призабойной зоны, что приводит к резкому снижению эксплуатационных показателей. При этом объема остаточных дренируемых запасов газа может быть достаточно для поддержания промышленного уровня добычи. Для исследования системы добычи продукции в этих условиях предлагается использовать свойство живучести. Понятие живучести известно в технике, однако до сих пор не создана развитая теория, которая со-держала бы, как теория надежности, общетехнические результаты, позволяющие исследовать это свойство, оценивать его количественно и разрабатывать практические рекомендации по обеспечению живучести сложных систем. В статье представлена концепция научных исследований живучести систем добычи газа, основой которой является система предсказательного моделирования технологических процессов добычи продукции газоконденсатных месторождений, учитывающая новые технологии извлечения пластовой жидкости и период их внедрения. Введено понятие живучести системы добычи газа, определены признаки этого свойства. Существующее прикладное ПО для гидродинамического моделирования не позволяет исследовать живучесть системы добычи газа, поэтому актуальной становится задача разработки информационного и программного обеспечения для научных исследований живучести системы добычи газа в условиях обводнения газовых скважин. Предложена концептуальная модель автоматизации научных исследований живучести системы добычи газа в условиях обводнения скважин, являющаяся развитием интегрированной геолого-технологической модели газоконденсатного месторождения. Программно реализована прогностическая модель добычи продукции из обводненной скважины на основе технологии извлечения пластовой жидкости с использованием электроцентробежного насоса.

9. Разработка алгоритмов функционирования математической модели дирижабельного радиолокационного комплекса обнаружения малозаметных воздушных целей [№3 за 2019 год]
Автор: Суша С.В.
Просмотров: 8189
В статье дано описание комплексной математической модели дирижабельного радиолокационного комплекса для обнаружения малозаметных воздушных целей. Исследование проводилось с целью обоснования технического облика, особенностей применения, оценки эффективности функционирования и боевых (информационных) возможностей данного комплекса. Разработка включает в себя ряд имитационных моделей (модель фоноцелевой обстановки, модель Земли, модель бортовых систем, включающая модель радиолокационной станции, модель бортовой системы управления и модель функционирования навигационной системы, модель наземного пункта управления, включающая модель отображения информации об обнаруженных и сопровождаемых целях, модель управления бортом), а также функционально законченные блоки (системы обработки и анализа результатов). При моделировании все входящие в комплексную математическую модель имитационные модели строятся по единому принципу, динамика функционирования моделируемого комплекса имитируется путем последовательного изменения их состояний через некоторые интервалы времени. В работе приведена блок-схема общего алгоритма функционирования комплексной математической модели в режиме имитационного моделирования. Процесс моделирования осуществляется путем пошагового изменения модельного времени на величину шага. Представлены алгоритмы функционирования основных блоков и их взаимосвязь в составе общего алгоритма функционирования комплексной математической модели дирижабельного радиолокационного комплекса в режиме имитационного моделирования. Алгоритмы функционирования модели фоноцелевой обстановки включают в себя и воздушно-космическую целевую, и радиоэлектронную обстановку. Пространственное положение и ориентация целей относительно точки стояния дирижабельного радиолокационного комплекса и излучения всех бортовых радиоэлектронных средств цели определяются параметрами целей, а также направлением их прихода и интенсивностью излучения. Алгоритмы функционирования модели навигационной системы содержат исходные данные положения носителя – векторы ошибок определения его местоположения. Значения данных этих векторов определяются характеристиками навигационной системы. Модель радиолокационной станции строится на основе вычисления параметра обнаружения по уравнению радиолокации и расчета процесса распространения сигналов. Данная модель включает алгоритмы первичной и вторичной обработки радиолокационной информации. Реализация представленных алгоритмов в комплексной математической модели позволяет с достаточной степенью достоверности описать процессы функционирования дирижабельного радиолокационного комплекса при обнаружении, сопровождении, распознавании малозаметных воздушных целей, что обеспечит проведение оценки эффективности вариантов построения комплекса и его информационных возможностей.

10. Анализ влияния цветовых пространств на результаты обработки цветных изображений алгоритмами эквализации [№3 за 2019 год]
Автор: Балдин М.И.
Просмотров: 4591
Цветные изображения зачастую не обладают необходимым уровнем визуального качества. Одним из распространенных способов улучшения контраста цветного изображения является метод выравнивания гистограммы. Обработка цветных изображений с нарушением контраста, как правило, производится в цветовом пространстве YCbCr. Однако данное цветовое пространство не является универсальным для улучшения любых типов искажения, а использование неподходящего цветового пространства может существенно снизить качество цветопередачи. В данной работе проводится сравнительный анализ влияния цветовых пространств на результат обработки алгоритмов эквализации. Представлено описание структуры изображений. Рассмотрены различные цветовые пространства, такие как RGB, YCbCr, HSV и Lab, их преимущества, недостатки и области применения. Также подробно описан процесс прямого и обратного преобразований цветовых схем. Предложена классификация искаженных изображений с нарушением контраста на основе их гистограмм. Для выравнивания контраста яркостная компонента изображения обрабатывается шестью различными алгоритмами эквализации. Для анализа цветопередачи обработка изображений производится в каждом из рассмотренных цветовых пространств. При исследовании исходных и обработанных изображений в разных цветовых пространствах была выявлена зависимость представления цвета от типов искажения и цветовых схем. Оценка результатов обработки искаженных изображений при помощи количественных метрик оказалась неэффективной из-за наличия высокой доли шумов на изображении и отсутствия оригинального неискаженного снимка. Поэтому для оценки качества изображений используется визуальная оценка его человеком. Также описываются особенности проведения исследования. На основе полученных результатов для улучшения цветопередачи для каждого типа искаженных цветных изображений подбирается соответствующая цветовая схема. Для обработки высококонтрастных изображений лучше всего подойдет цветовое пространство HSV, для низкоконтрастных - цветовая схема Lab, для ярких – система YCbCr, для темных изображений – пространство HSV.

| 1 | 2 | 3 | Следующая →