На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2024

Статьи из выпуска № 4 за 2014 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам

21. Методология обучения рекуррентной искусственной нейронной сети с динамической стековой памятью [№4 за 2014 год]
Авторы: Лила В.Б., Пучков Е.В.
Просмотров: 14188
В работе предложено обобщить рекуррентные искусственные нейронные сети путем добавления задержки сигналов обратной связи скрытого слоя на несколько тактов в виде динамической стековой памяти. Это позволило обеспечить адаптивное запоминание прошлых временных событий и создать гибкий инструмент для построения не-линейных моделей. Предложенная универсальная архитектура рекуррентной искусственной нейронной сети с динамической стековой памятью обобщает такие сети, как многослойный персептрон, сеть Джордана, сеть Элмана, а также сети с нейронами, имеющими обратную связь. Представлена методология обучения универсальной нейросетевой архитектуры для решения задачи прогнозирования временного ряда, основанная на трансформации обучаю-щей выборки. Обратные связи от скрытого слоя или от выходов сети исключаются путем добавления в обучающую выборку сигналов обратной связи. Для реализации предлагаемой методологии обучения рекуррентной искусствен-ной нейронной сети с динамической стековой памятью расширены возможности нейроэмулятора NeuroNADS. Рассмотрены новая объектно-ориентированная модель нейроэмулятора и ее основные программные классы. Проведен прогноз среднемесячной плотности солнечной активности на длине волны 10,7 см на первые шесть месяцев 2012 г. на основе данных за 2010–2011 гг. Рекуррентная искусственная нейронная сеть обучалась гибридным методом, в основе которого лежат адаптивный и генетический алгоритмы. Проанализированы результаты исследования и сделан вывод, что рекуррентную искусственную нейронную сеть с динамической стековой памятью можно обучать с помощью предложенной методологии, а построенные модели искусственных нейронных сетей использовать для прогнозирования временных рядов.

22. Искусственные иммунные системы: обзор и современное состояние [№4 за 2014 год]
Авторы: Чернышев Ю.О., Григорьев Г.В., Венцов Н.Н.
Просмотров: 14101
Решение задач оптимизации является одной из основных сфер применения различных эвристических алгоритмов, вдохновленных как живой, так и неживой природой. В данной статье делается обзор современного состояния, относительно нового класса, биоинспирированных алгоритмов – искусственных иммунных систем. Рассматриваются их проблемы, недостатки и преимущества, актуальные разработки в области искусственных иммунных систем. Работа содержит обзор исследований в области иммунных сетей, иммунного ответа, соматической гипермутации, теории опасности и процессов отбора. Искусственные иммунные системы вызывают все больший интерес, обусловленный тем, что они вобрали в себя лучшие особенности биоинспирированных методов, такие как динамическое расположение элементов из эволюционных алгоритмов и принципы обучения из искусственных нейронных сетей. Так, если иммунные сети относятся к числу самых первых моделируемых процессов из иммунноинспирированных исследований, то теорию опасности и моделирование процессов соматической гипермутации, отбора можно считать довольно молодыми сферами исследований. Однако и иммунные сети сегодня актуальны: они используются как ключевые узлы в гибридных биоинспирированных системах. Различные имплементации таких систем находят новые сферы применения в науке и промышленности. Зачастую сферы применения те же, что и у исследуемых ранее систем эвристических алгоритмов, но также появляются новые, ранее не исследуемые в этом ключе области информационных наук (например data-mining). Обзор текущего состояния искусственных иммунных систем сделан в разрезе разработок зарубежных и отечественных авторов.

23. Погрешность воспроизведения спектральной меры перестановочным методом моделирования стохастических процессов [№4 за 2014 год]
Авторы: Кузнецов Б.Ф., Шишкина С.В., Бородкин Д.К.
Просмотров: 7359
В работе рассматривается один из универсальных перестановочных методов моделирования стохастических процессов с заданными спектральной и вероятностной мерами. Привлекательной особенностью метода является отсутствие ограничений на сочетания вероятностной и спектральной мер. Выдвинута гипотеза о причинах возникновения и составе общей погрешности воспроизведения автокорреляционной функции моделируемого процесса при использовании данного метода. Сделано предположение, что погрешность моделирования состоит из двух частей: вариационной и методической. Разработан и предложен способ анализа погрешности, позволяющий сделать постоянным значение вариационной составляющей погрешности, то есть сделать ее не зависящей от параметров автокорреляционной функции. Это, в свою очередь, позволяет проводить анализ зависимости методической составляющей погрешности моделирования от параметров автокорреляционной функции. Для проверки выдвинутой гипотезы были проведены четыре серии численных экспериментов по моделированию стохастических процессов при специально подобранных сочетаниях законов распределения. Законы распределения выбирались из соображений отсутствия или наличия условий возникновения методической погрешности. Основываясь на особенностях анализируемого метода, а именно на наличии ведущего и ведомого процессов, разработана процедура статистического анализа результатов моделирования. Проведение этой процедуры не дало оснований отвергнуть гипотезу о наличии двух составляющих погрешности: вариационной и методической. В работе показано, что использование предложенного метода анализа позволяет значительно уменьшить влияние вариационной составляющей на результаты анализа методической погрешности и тем самым обосновать возможность применения метода моделирования стохастических процессов для решения тех или иных задач.

24. Программное обеспечение акустооптических процессоров [№4 за 2014 год]
Авторы: Шибаев С.С., Помазанов А.В., Волик Д.П.
Просмотров: 8807
В акустооптических процессорах, назначением которых является в основном измерение параметров радиочастотных сигналов, вся необходимая информация о сигнале и его параметрах содержится в аналоговом световом Фурье-распределении в плоскости анализа, в которой с целью дальнейшей обработки устанавливается либо ПЗС-фотоприемник, либо линейка фотодиодов, сигнал с которых в виде распределения амплитуд световой интенсивности оцифровывается бортовыми средствами. Обработка такого цифрового сигнала полностью либо частично возлагается на внешнюю вычисли-тельную систему – персональный компьютер. В таких условиях значительную роль играет специализированное программное обеспечение, которое не только несет нагрузку по извлечению полезной информации из потока принимаемых данных, но и выполняет ряд сервисных функций. В работе рассмотрены структура и возможности приложения для наиболее распространенного класса акустооптических процессоров – измерителя частоты радиосигнала. В программе реализованы функции считывания и отображения амплитудного распределения в режиме реального времени, функция ручного и автоматического измерения частоты сигнала. С ее помощью выполняется несколько видов калибровки, начиная от компенсации темнового фона и заканчивая учетом нели-нейности частотной шкалы. Имеется возможность сохранения полученных распределений в виде файлов с целью их после-дующего анализа в таких известных программных продуктах, как MathCad, MatLab и др. Приложение предоставляет возможность управления внешним лабораторным оборудованием при помощи интерфейса Ethernet, в частности, генераторами Agilent или других фирм, что позволяет перед эксплуатацией измерителя в автоматическом режиме протестировать его характеристики и учесть эти результаты при калибровке прибора.

25. Аппаратно-программный комплекс диагностики состояния ионосферы по характеристикам сигналов радиопередатчиков диапазона очень низких частот [№4 за 2014 год]
Авторы: Скрипачев В.О., Полушковский Ю.А., Назаренко А.С.
Просмотров: 11294
Ионосфера является чувствительной средой распространения радиоволн, где проявляются отклики на геофизические и геологические процессы, диагностика ее состояния важна и актуальна. Один из методов диагностики состояния ионосферы – использование сигналов радиопередатчиков диапазона очень низких частот. По характеристикам радиосигналов очень низких частот можно судить о наличии возмущений в ионосфере. Низкочастотные волны, распространяющиеся в околоземной плазме, в последние десятилетия представляют значительный интерес в связи с разнообразными научными и техническими приложениями. Так, с помощью радиосигналов очень низких частот можно диагностировать отклик D-слоя ионосферы на солнечные вспышки, на процессы подготовки сильных землетрясений. Для обработки этих радиосигналов разработан аппаратно-программный комплекс, включающий в себя антенну, усилитель, приемник, аналого-цифровой преобразователь и ПЭВМ. Программная часть построена с использованием фреймворка Qt и сторонних программных библиотек QwtPlot3D и QCustomPlot. В статье приведены краткое описание и особенности каждой из них, используемые в программной части разработанного комплекса. Программная часть комплекса построена с применением паттерна проектирования MVC. Приведены функции, реализованные в ПО комплекса. Отмечены перспективы развития аппаратно-программного комплекса.

26. О подходе к развитию методики построения радиолокационной системы [№4 за 2014 год]
Авторы: Семенов С.А., Кобан А.Я.
Просмотров: 8684
Построение перспективной радиолокационной системы является сложной слабоструктурированной задачей в связи с высокой сложностью ее структур. Поэтому существующий методический аппарат построения системы пред-ставляет собой совокупность не вполне взаимосвязанных методик, каждая из которых позволяет структурировать построение системы на определенном этапе с использованием различных показателей и критериев, например, на этапах формирования облика функционала обработки информации, который создается на основе типовых программных решений и процедур при разработке элементов системы, и построения группировки. Причем на упомянутых этапах не формализуются общая цель, интегральный показатель, характеризующий ее достижение, и единая методика построения. В результате не обеспечивается возможность сравнительной оценки потенциальной и реальной эффективности системы, проявляется недостаточность автоматизированных процедур обработки информации, реализующих функционал. Для выполнения целенаправленного построения в статье предлагается подход, направленный на создание единой для всех этапов методики построения перспективной радиолокационной системы в части формализации постановок и абстрактного решения задач с акцентом на этап уточнения варианта формирования облика функционала подсистемы сбора и обработки.

27. Разработка программного модуля для автоматического выбора решателей систем линейных алгебраических уравнений для прочностного анализа [№4 за 2014 год]
Автор: Стёпин Н.Е.
Просмотров: 9023
В работе реализован программный модуль, объединивший в себе различные алгоритмы и методы: прямые и итерационные решатели для симметричных и несимметричных матриц системы, различные предобуславливатели в итерационных методах, различные способы хранения матрицы в памяти, параллельные вычисления с использованием технологий OpenMP и CUDA. В программном модуле реализован метод решения задач для несжимаемых материалов на основе алгоритма Узавы. Для программного модуля разработан и реализован алгоритм оптимального выбора решателя в зависимости от механической постановки задачи, ее размерности и возможностей компьютера. При желании пользователь может сам ограничивать некоторые возможности выбора и задавать параметры, влияющие на выбор решателя, или даже указать явно, какой решатель он хочет использовать. По сути программный модуль является некоторой оболочкой над отдельными решателями, которая принимает матрицу системы, правую часть и некоторые параметры настройки, а затем в рамках содержащегося в ней алгоритма определяет, какой именно решатель необходимо запускать, настраивает его и приводит матрицу к соответствующему виду (разные решатели могут иметь разные оптимальные форматы хранения для матриц). Проведен ряд численных экспериментов, подтверждающих обоснованность используемых в алгоритме критериев.

28. Исследование производительности ряда итерационных методов решения системы линейных алгебраических уравнений в упругопластической задаче [№4 за 2014 год]
Авторы: Толмачев А.В., Коновалов А.В., Партин А.С.
Просмотров: 9707
Упругопластическая задача с большими пластическими деформациями физически и геометрически существенно нелинейная. Большая часть времени ее решения методом конечных элементов затрачивается на решение системы линейных алгебраических уравнений (СЛАУ) относительно искомого вектора обобщенной скорости в узлах конечно-элементной сетки. Для сокращения времени расчетов необходимо использовать параллельные вычисления, в частности, на кластерных системах. Матрица системы несимметричная, имеет большую размерность, является ленточной и разреженной внутри ленты. Использование прямых методов для решения СЛАУ приводит к образованию заполнения внутри ленты и большим затратам как памяти, так и времени счета. На базе решения тестовой задачи сжатия параллелепипеда плоскими плитами выполнен вычислительный эксперимент на кластере «Уран» Института математики и механики УрО РАН с целью анализа производительности параллельных итерационных методов релак-сации, BiCGStab и GMRES решения СЛАУ в упругопластической задаче с большими пластическими деформациями. Рассмотрена эффективность применения параллельных предобуславливателей ILU, ILUT, ILUC, SAINV, SAAMG в методе BiCGStab. Выполнена оценка погрешности времени решения СЛАУ, вносимой стохастичностью процесса передачи данных по сети кластерной системы. Результаты вычислительного эксперимента показали, что метод релаксаций по сравнению с методами BiCGStab и GMRES требует значительно большего времени на решение СЛАУ, поэтому является неэффективным. Метод GMRES затрачивает наименьшее время на решение СЛАУ на небольшом количестве процессов, однако метод BiCGStab обладает лучшим ускорением, хорошей масштабируемостью и при использовании большого количества процессоров обеспечивает наименьшее время на решение СЛАУ. Случайное отклонение времени решения СЛАУ, вызванное стохастической задержкой сети, не превышает 5 % от среднего. Предобуславливатель ILUC является наиболее эффективным из рассмотренных по времени выполнения, однако предобуславливатель SAINV требует наименьшего количества итераций решения СЛАУ методом BiCGStab.

29. Нечеткий регулятор со скользящим режимом на основе мягких вычислений [№4 за 2014 год]
Авторы: Нефедов Н.Ю., Ульянов С.В.
Просмотров: 11276
В статье исследуется управление со скользящим режимом для неустойчивой динамической системы «каретка– маятник» с использованием инструментария оптимизатора баз знаний на основе мягких вычислений. Рассматриваются три основных подхода к устранению колебаний в системе со скользящим режимом, описаны преимущества и недостатки данных подходов. Показан алгоритм создания базы знаний для регулятора со скользящим режимом в новом разработанном инструментарии для проектирования робастных интеллектуальных систем управления – оптимизаторе баз знаний на мягких вычислениях. Сравнивается качество баз знаний, созданных с помощью эксперта и интеллектуальных систем управления: оптимизатора баз знаний и инструментария МАТЛАБ ANFIS на основе моделирования управления неустойчивого динамического объекта. Даются необходимые формальные определения, при-водится соответствующий иллюстративный материал. Проведенное тестирование показало, что интеллектуальная система управления, спроектированная в оптимизаторе, обладает большей робастностью, чем интеллектуальные системы управления, созданные с использованием других современных средств.

30. Программный комплекс для решения задач теории потенциала методом граничных элементов [№4 за 2014 год]
Авторы: Федотов В.П., Спевак Л.Ф., Нефедова О.А.
Просмотров: 9801
Работа посвящена развитию подхода к реализации метода граничных элементов, направленного на распараллеливание вычислений, для решения двухмерных задач об установившихся потенциальных течениях. Главной особенностью применяемых алгоритмов решения является точное вычисление всех интегралов по граничным элементам с помощью выведенных авторами аналитических формул. Это позволяет заметно повысить точность решения и сократить время расчета. Разработанный программный комплекс предназначен для решения двухмерных задач теории потенциала в области произвольной геометрии при заданных граничных условиях для искомой функции или потока. В комплекс заложена возможность решения однородных задач (при отсутствии внутренних источников), а также задач с заданными функциями источников. Функция источника задается отдельным программным модулем. Особо рассмотрен случай, когда функция источника является гармонической. Это позволяет свести все вычисления при решении неоднородной задачи на границу области. Для задания геометрии исследуемой области и ввода параметров задачи и граничных условий в программный комплекс включен графический редактор. Область задается своей внешней границей, состоящей из прямолинейных и круговых участков. Для каждого участка задаются граничные условия и количество граничных элементов на нем. С помощью графического редактора внутри расчетной области может быть задана зона, в которой требуется вычислить значения искомой функции. Эта зона также задается границей из прямолинейных и круговых участков. Частота расчетной сетки в зоне задается произвольно, пересчет для новой сетки не требует нового решения исходной задачи. Программный комплекс был реализован на суперкомпьютере «Уран» ИММ УрО РАН. В качестве примеров рассмотрены задачи распространения тепла в пластинах квадратной и эллиптической форм при различных функциях источника.

← Предыдущая | 1 | 2 | 3 | 4 | 5 | Следующая →