На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2020 г.)
2-летний импакт-фактор РИНЦ: 0,493
2-летний импакт-фактор РИНЦ без самоцитирования: 0,425
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,932
5-летний импакт-фактор РИНЦ: 0,455
5-летний импакт-фактор РИНЦ без самоцитирования: 0,414
Суммарное число цитирований журнала в РИНЦ: 8847
Пятилетний индекс Херфиндаля по цитирующим журналам: 165
Индекс Херфиндаля по организациям авторов: 255
Десятилетний индекс Хирша: 20
Место в общем рейтинге SCIENCE INDEX за 2020 год: 165
Место в рейтинге SCIENCE INDEX за 2020 год по тематике "Автоматика. Вычислительная техника": 4

Больше данных по публикационной активности нашего журнале за 2008-2020 гг. на сайте РИНЦ

Добавить в закладки

Следующий номер на сайте

1
Ожидается:
16 Марта 2021

Статьи из выпуска № 3 за 2020 год.

Упорядочить результаты по:
Дате публикации | Заголовку статьи | Авторам |

21. Проецирование технических объектов на изображении в метрическое пространство при помощи глубоких нейронных сетей для задачи детектирования [№3 за 2020 год]
Авторы: Толстель О.В., Ширкин А.Е., Калабин А.Л.
Просмотров: 2233
Представлен алгоритм векторизации изображения, содержащего технические объекты. В качестве таких объектов выступают машиностроительные детали, элементы крепежа, метизы. Под векторизацией подразумевается преобразование изображения в вектор, для которого эвклидово расстояние имеет семантический смысл. Данный алгоритм создавался для усовершенствования си-стемы оценки позиции объектов, где существует проблема непостоянного количества типов предметов для распознавания. Предложен подход к формированию метрического пространства, где изображение, преобразованное в вектор по метрике l2, может сравниваться с изображением-эталоном, тем самым решается задача непостоянного количества классов. Для добавления нового класса достаточно внести в систему изображение-эталон в виде вектора и найти расстояние до него. Если оно меньше других изображений, то данный эталон будет типом объекта, представленным на вход системе. Данный подход реализуется при глубоких нейронных сетях, где последний слой убирается, а оставляется предпоследний слой, который представляет верхний уровень признаков, извлеченных из изображения. Такая нейронная сеть проходит процесс обучения с помощью функции потерь Triplet loss, научив нейронную сеть векторизовать изображение в метрическое пространство. Программа, реализующая предложенный алгоритм, разработана на языке Python 3.6 с использованием интегрированной среды Jupyter Lab для операционной системы Ubuntu 18.04. Приведены результаты эксперимента по использованию предложенного алгоритма для отнесения полученных изображений к тому или иному эталону. Для оценки качества алгоритма использованы метрики ранжирования для задач поиска, где оценивается только самый первый объект в списке ближайших объектов. Разработанный алгоритм может применяться в системах технического зрения для роботов-манипуляторов, а в дальнейшем в системах управления захватом объектов этим роботом.

← Предыдущая | 1 | 2 | 3