ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Публикационная активность

(сведения по итогам 2017 г.)
2-летний импакт-фактор РИНЦ: 0,500
2-летний импакт-фактор РИНЦ без самоцитирования: 0,405
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,817
5-летний импакт-фактор РИНЦ: 0,319
5-летний импакт-фактор РИНЦ без самоцитирования: 0,264
Суммарное число цитирований журнала в РИНЦ: 6012
Пятилетний индекс Херфиндаля по цитирующим журналам: 404
Индекс Херфиндаля по организациям авторов: 338
Десятилетний индекс Хирша: 17
Место в общем рейтинге SCIENCE INDEX за 2017 год: 527
Место в рейтинге SCIENCE INDEX за 2017 год по тематике "Автоматика. Вычислительная техника": 16

Больше данных по публикационной активности нашего журнале за 2008-2017 гг. на сайте РИНЦ

Вход


Забыли пароль? / Регистрация

Добавить в закладки

Следующий номер на сайте

4
Ожидается:
16 Декабря 2018

Программный комплекс для проектирования составов безобжиговых мономинеральных композитов

A software complex for designing unburned monomeneral composites
Дата подачи статьи: 2017-07-10
УДК: 681.3
Статья опубликована в выпуске журнала № 1 за 2018 год. [ на стр. 199-203 ][ 20.03.2018 ]
Аннотация:Представлены программный комплекс по управлению синтезом безобжиговых строительных композитов на основе мономинерального сырья и отходов промышленности композитов и отдельные программные продукты для проектирования составов и технологических параметров. В работе применен новый подход к проектированию сырьевых смесей строительных изделий, позволяющий сократить энерго- и ресурсозатраты при производстве путем организации производства гипсовых материалов, исключая наиболее затратные операции (технологические переделы) – обжиг сырья с целью получения вяжущего и термической обработки готовых изделий – их сушки. Использование такого производства, исключающего стадию получения минерального вяжущего из природного или техногенного сырья, позволяет значительно упростить технологический процесс получения строительных материалов, сократив при этом затраты на их производство, а также использовать в строительном производстве отходы от добычи и пиления природных каменных материалов, не пригодных по своим физико-механическим характеристикам для получения традиционных вяжущих веществ. Возможность получения безобжиговых материалов основана на использовании механизма негидратационного твердения двуводного гипса. Для этого необходимо обеспечивать подбор оптимального гранулометрического состава с возможностью оперативного управления корректирующими и предупреждающими действиями. Эффективность процесса определяется организацией лимитирующего этапа ‒ процесса проектирования, представляющего собой решение сложной многокритериальной задачи, а также установлением обратных связей – контроля и анализа информации на соответствующих этапах технологического процесса. Комплекс по проектированию предполагает использование отдельных программных продуктов, необходимых для определения характеристик структуры системы негидратационного твердения, подбора требуемого гранулометрического состава сырьевой смеси и оптимальной влажности пресс-порошка, назначения технологических режимов на основе прогноза свойств готового продукта.
Abstract:The paper presents a software complex to control the synthesis of unburned building composites based on monomineralic raw materials and industrial wastes of composites, as well as separate software products to design components and process parameters. The authors apply a new approach to the design of building product raw mixtures, which makes it possible to reduce energy and resource costs in production by organizing the production of gypsum materials excluding expensive operations (technological transfers), such as raw materials baking to obtain binder and heat treatment of finished products (drying). The use of such production, which excludes the stage of obtaining a mineral binder from natural or man-made raw materials, makes it possible to significantly simplify the technological process of obtaining building materials, while reducing their production costs. It also allows using in a construction industry the waste from mining and sawing natural stone materials that are not suitable for their physical and mechanical characteristics to obtain traditional binders. The possibility of obtaining unburned materials is based on using a mechanism of non-hydration hardening of two-water gypsum. For this purpose, it is necessary to ensure the selection of an optimal granularity composition with the possibility to manage corrective and preventive actions operatively. The efficiency of the process is determined by the limiting stage organization. It is the design process that is a solution to a complex multicriterion task. Another criterion is feedback establishment, i.e. information control and analysis at the relevant stages of a technological process. The design complex assumes using separate software products that are necessary to determine structure characteristics of the non-hydration hardening system, selection of the required granularity composition of a raw mixture and the press powder optimum moisture, assignment of technological regimes based on forecasting the finished product properties.
Авторы: Петропавловская В.Б. (victoriapetrop@gmail.com) - Тверской государственный технический университет, Тверь, Россия, кандидат технических наук, Коровицын Д.А. (kevich@pisem.net) - Тверской государственный технический университет, Тверь, Россия, Аспирант , Образцов И.В. (sunspire@list.ru) - Тверской государственный технический университет, Тверь, Россия, Петропавловский К.С. (ekrioro@gmail.com) - Тверской государственный технический университет, Тверь, Россия, Аспирант
Ключевые слова: программный комплекс, проектирование составов, безобжиговые мономинеральные строительные композиты, система управления
Keywords: software package, design compositions, bonded mineral building composites, a control system
Количество просмотров: 1001
Статья в формате PDF
Выпуск в формате PDF (9.67Мб)

Размер шрифта:       Шрифт:

Все более актуальной становится задача утилизации отходов и попутных продуктов в производстве товарной продукции. Наиболее остро проблема энерго- и ресурсосбережения стоит в строительной индустрии, где традиционные технологии получения строительных материалов не отвечают требованиям по энергоэффективности, а запасы природного сырья истощаются.

Новый подход к разработке и использованию вяжущих веществ [1] позволяет значительно сократить как энергетические, так и материальные затраты, превращая не используемые в промышленном производстве в настоящее время мономинеральные отходы в современный высококачественный строительный материал. Использование технологий, исключающих стадию получения минерального вяжущего из природного или техногенного сырья, позволяет значительно упростить технологический процесс получения различных видов строительных материалов, сократив при этом затраты на их производство, а также использовать в строительном производстве отходы от добычи и пиления природных каменных материалов, не пригодных по своим физико-механическим харак- теристикам для получения традиционных вяжущих веществ [2].

Получение безобжиговых изделий на основе мономинерального сырья предусматривает гибкую систему управления технологическим процессом, что обусловлено, прежде всего, особенностями негидратационного твердения [3] и необходимостью жесткой регламентации рецептур сырьевых смесей во взаимосвязи с параметрами технологического процесса.

Изменение рецептуры предполагает изменение времени перемешивания, степени увлажненности пресс-порошка, давления прессования и других параметров. Таким образом, необходимость оперативного корректирования процессов вызвана обеспечением целого ряда взаимосвязанных факторов (рис. 1), в целом обеспечивающих получение готового продукта и его высокое качество [3, 4].

Эффективность процесса определяется организацией лимитирующего этапа ‒ процесса проектирования, представляющего собой решение сложной многокритериальной задачи, а также установлением обратных связей – контроля и анализа информации на соответствующих этапах техно- логического процесса. В данной работе подробнее рассматривается процесс проектирования, представленный на контекстной диаграмме (рис. 2).

Путем декомпозиции контекстной диаграммы разработана диаграмма (см. http://www.swsys.ru/uploaded/image/2018_1/2018-1-dop/12.jpg), детально описывающая составляющие процесса проекти- рования. Автоматизированный комплекс по про- ектированию включает отдельные программные продукты, необходимые для исследования топо- логического пространства дисперсной системы негидратационного твердения и определения ее основных топологических характеристик, для оптимизации зернового состава сырьевой смеси и подбора оптимальной влажности пресс-порошка а также для прогнозирования свойств полуфабрикатов и готового продукта и др.

На рисунке 3 изображен интерфейс одной из составляющих программного комплекса, позволяющего моделировать [5, 6] процесс формирования внутренней структуры бинарной сырьевой смеси и получать упаковки частиц, обеспечивающих образование максимального количества контактов в системе [3, 7]. Имитационная модель многоуровневого формирования топологического пространства системы негидратационного твердения позволяет проводить расчеты основных топологических ха- рактеристик системы – плотности упаковки и объемного наполнения элементарной ячейки компонентами бинарной смеси. Для создания модели применялся язык программирования Blitz3D с возможностью трехмерной визуализации [5].

Для подбора оптимального зернового состава сырьевой смеси [8] использован программный комплекс по расчету гранулометрического состава смеси n-го числа компонентов (рис. 4).

Принцип работы программы основан на цикличном генерировании случайных величин конечных объемных долей, формировании расчетного зернового состава и сравнении его с «идеальным», выраженным математической формулой, характеризующейся оптимальным распределением частиц, отвечающих механизму негидратационного твердения. Ввиду того, что оптимизация заключается в применении «идеальных» кривых распределения частиц по объему, применен ряд известных математических зависимостей – формулы Функа–Дингера, Фуллера, Гуммеля, Боломея и т.п. Эти зависимости имеют вид A = f(D), где A – проходы зерен, %; D – размеры зерен, мм.

Разработанные программы предназначены для расчета составов сырьевых смесей строительных композитов на основе мономинерального природного и техногенного сырья – двуводного гипса, известняка и доломита.

Все программы автоматизированного комплекса работают последовательно.

Автоматизация процесса проектирования мономинеральных композитов – сложной технической задачи, решаемой с использованием программных комплексов, и оперативное корректирование процесса проектирования позволят повысить эффективность технологии за счет выбора математически обоснованной рецептуры композита и оптимизации технологических параметров, сокращения погрешностей и временных затрат [9]. При этом возможно также сокращение потерь и общего количества затрат на производство безобжиговых изделий за счет обеспечения максимально эффективного процесса управления технологией их получения [9, 10].

Литература

1.     Buryanov A.F., Petropavlovskaya V.B., Novichenko- va T.B., Petropavlovsky K.S. Simulating the structure of gipsum composites using pulverized basalt waste. Key Engineering Materials, vol. 737, pp. 517–521. DOI: 10.4028/www.scientific.net/KEM. 737.517.

2.     Палюх Б.В., Петропавловская В.Б. Применение методов искусственного интеллекта для управления синтезом безобжиговых строительных композитов нового поколения // Вестн. Белгородского гос. технологич. ун-та им. В.Г. Шухова. 2014. № 1. С. 44–51.

3.     Петропавловская В.Б., Белов В.В., Бурьянов А.Ф. Твердеющие кристаллизационные системы на основе порошков двуводного гипса // Строительные материалы. 2007. № 12. С. 46–47.

4.     Бурдо Г.Б., Семенов Н.А. Интеллектуальная поддержка принятия решений при диспетчировании технологических процессов в многономенклатурном машиностроении // Програм- мные продукты и системы. 2017. Т. 30. № 1. С. 21–27. DOI: 10.15827/0236-235X.117.021-027.

5.     Белов В.В., Новиченкова Т.Б., Образцов И.В. Расчет топологических параметров сыпучих дисперсных систем. Патент 2011615905; зарегистр. 28.07.11.

6.     Волошин В.П., Медведев Н.Н., Фенелонов В.Б., Пар- ман В.Н. Исследование структуры пор в компьютерных моделях плотных и рыхлых упаковок сферических частиц // Журнал структурной химии. 1999. Т. 40. № 4. С. 46–60.

7.     Хархардин А.Н., Топчиев А.И. Уравнения для координационного числа в неупорядоченных системах // Успехи современного естествознания. 2003. № 9. С. 47–53.

8.     Петропавловская В.Б., Белов В.В., Новиченкова Т.Б., Полеонова Ю.Ю., Бурьянов А.Ф. Использование отходов природного гипсового камня в производстве безобжиговых материалов // Строительные материалы. 2012. № 7. С. 28–30.

9.     Калабин А.Л., Удалов Е.В., Хабаров А.Р. Программная система исследований динамики технологических процессов формования химических волокон // Программные продукты и системы. 2015. № 1. С. 139–144. DOI:10.15827/0236-235X.109. 139-144.

10.   Белов В.В., Бурьянов А.Ф., Петропавловская В.Б. Современные эффективные гипсовые вяжущие, материалы и изделия: науч.-справ. изд. Тверь: Изд-во ТГТУ, 2007. 132 с.


Постоянный адрес статьи:
http://www.swsys.ru/index.php?page=article&id=4422
Версия для печати
Выпуск в формате PDF (9.67Мб)
Статья опубликована в выпуске журнала № 1 за 2018 год. [ на стр. 199-203 ]

Возможно, Вас заинтересуют следующие статьи схожих тематик: