На правах рекламы:
ISSN 0236-235X (P)
ISSN 2311-2735 (E)

Авторитетность издания

ВАК - К1
RSCI, ядро РИНЦ

Добавить в закладки

Следующий номер на сайте

2
Ожидается:
16 Июня 2024

Комплекс программ для расчета автоматических систем регулирования технологических процессов

Статья опубликована в выпуске журнала № 1 за 1996 год.
Аннотация:
Abstract:
Авторы: Комиссарчик В.Ф. () - , Исмагилов И.Б. () -
Ключевое слово:
Ключевое слово:
Количество просмотров: 17639
Версия для печати

Размер шрифта:       Шрифт:

Одной из важнейших задач автоматизации технологических процессов* является автоматическое регулирование, реализуемое посредством автоматических систем регулирования (АСР). Большое значение при разработке АСР имеет расчет настроек регуляторов, квалифицированность выполнения которого определяет качество регулирования, а, следовательно, работоспособность и эффективность системы автоматизации в целом.

В настоящей статье описывается комплекс программных средств для расчета настроек регуляторов в одноконтурных и комбинированных АСР.

Одноконтурные АСР с типовыми линейными законами регулирования находят наибольшее применение при автоматизации технологических процессов. Структурная схема одноконтурной АСР изображена на рисунке1, где

Y,Yзад - действительное и заданное значения регулируемой величины;

X -регулирующее воздействие;

F - Возмущающее воздействие;

Wx(p) - передаточная функция объекта регулирования по каналу регулирующего воздействия;

W F(p) передаточная функция объекта регулирования по каналу возмущающего воздействия;

*Комиссарчик В.Ф. Автоматическое регулирование технологических процессов: Учебное пособие. ТГТУ, 1995 (и далее по тексту: см. Комиссарчик В.Ф.)

Wрег(p) - передаточная функция регулятора.

Предполагается, что передаточная функция объекта регулирования по каналам управляющего и возмущающего воздействий может быть представлена последовательным соединением 4-ех типовых звеньев. Допускается использование нескольких звеньев одного типа. Максимальное число звеньев в одной передаточной функции 10. В качестве типовых используются четыре наиболее часто встречающихся в практике расчетов АСР звена:

- инерционное первого порядка;

- идеальное интегрирующее;

- колебательное;

- чистого запаздывания.

Описываемый комплекс программ позволяет рассчитать настройки пяти типовых регуляторов:

- пропорционального;

- интегрального;

- пропорционально-интегрального;

- пропорционально-дифференциального;

- пропорционально-интегрально-дифференциального.

Для определения настроек типовых регуляторов используется метод расширенных частотных характеристик (см. Комиссарчик В.Ф.), достоинством которого является возможность расчета настроек регуляторов в системе с чистым запаздыванием, а также достаточная простота его машинной реализации. Этот метод позволяет рассчитать настройки регулятора, обеспечивающие заданную колебательность переходного процесса в замкнутой АСР. Колебательность переходного процесса оценивается степенью затухания и степенью колебательности m.

Настройки регуляторов определяются по линии равного затухания (ЛРЗ), для построения которой необходимо предварительно получить расширенные частотные характеристики (РЧХ) объекта регулирования.

Расширенная амплитудно-частотная характеристика (РАЧХ) объекта находится перемножением РАЧХ типовых звеньев, а расширенная фазово-частотная характеристика (РФЧХ) jx (m, w) - суммированием РФЧХ типовых звеньев, входящих в модель объекта регулирования. В программе имеется библиотека РАЧХ и РФЧХ типовых звеньев, оформленная в виде отдельного модуля, к которому по мере необходимости происходит обращение из модулей, осуществляющих расчет настроек регуляторов.

Предварительно определяются граничные частоты w0, w1, w2 для расчета ЛРЗ, который осуществляется по следующим формулам. Для регуляторов с одним настроечным параметром (П, И) ЛРЗ вырождается в точку, определяемую следующими соотношениями.

Для П-регулятора:

Для регуляторов с двумя настроечными параметрами (ПИ, ПД) ЛРЗ строится соответственно в координатах K0-K1 и К1-К2 по выражениям:

Для ПИ-регулятора:

Для ПД-регулятора:

Для ПИД-регулятора с тремя настроечными параметрами строится семейство ЛРЗ в координатах K0-K1 при фиксированных значениях К2 по выражениям:

где К0, K1, K2 - коэффициенты соответственно интегральной, пропорциональной и дифференциальной составляющей в законе регулирования;

Ти - время изодрома;

Тп - время предварения.

Затем модель объекта регулирования анализируется на предмет возможности расчета тех или иных типов регуляторов в соответствии с таблицей, исходя из существования каждой из граничных частот (- - частота не существует, + -существует).

Далее расчет настроек регуляторов производится следующим образом.

Регуляторы с одним настроечным параметром (П, И).

-  Определяется значение РАЧХ объекта регулирования для соответствующей регулятору граничной частоты.

-  По формуле (1) или (3) определяется настройка П- или И- регулятора.

Регуляторы с двумя настроечными параметрами (ПИ, ПД).

-По выражениям (5)...(8) или (9)...(13) рассчитываются массивы координат точек ЛРЗ для системы с ПИ- или ПД- регулятором.

График ЛРЗ выводится на экран. Массивы координат точек ЛРЗ автоматически записываются в файл и могут быть использованы в дальнейшем для вывода графика на экран.

- Программа предоставляет пользователю настройки, соответствующие четырем точкам на ЛРЗ: 80% левее максимума, максимум, 80% и60% правее максимума. Пользователь имеет возможность построить переходные процессы в системе, используя в качестве настроек регулятора настройки, соответствующие любой из4-х точек и оценить качество регулирования в каждом из случаев. Если ЛРЗ разомкнута по K1или по K2 , в качестве оптимальных выбирают настройки, соответствующие максимально допустимому по техническим характеристикам регулятора значению К0 (для ПИ-регулятора)или К (для ПД-регулятора), которые запрашиваются у пользователя.

ПИД-регулятор.

Расчет настроек ПИД-регулятора производится при условии заданного значения отношения Тп/Ти в диапазоне 0.1 - 0.25. При вычислении ЛРЗ используется итерационная процедура определения значения Кг, при котором выполняется ограничение (17). На каждом шаге фактическое значение Тп/Ти сравнивается с требуемым с заданной точностью. При попадании отклонения в диапазон заданной точности происходит запоминание настроек ПИД-регулятора и выход из итерационной процедуры.

Расчет переходного процесса в замкнутой системе по каналам регулирующего или возмущающего воздействий производится методом Акулышина (см. Комиссарчик В.Ф.). Массивы координат точек графика переходного процесса записываются в файл (как и при построении ЛРЗ). На экран, кроме графика переходного процесса, выводится величина интегрального квадратичного критерия качества.

В комбинированной АСР в качестве компенсатора используется реальное дифференцирующее звено, для расчета настроек которого используется приближенный метод (см. Комиссарчик В.Ф.). Суть метода заключается в компенсации возмущения на резонансной частоте системы автоматического регулирования.

Для расчета настроек устройства компенсации должна быть предварительно задана передаточная функция объекта регулирования по каналу возмущающего воздействия.

Расчет настроек устройства компенсации осуществляется в следующей последовательности.

1. Определяется резонансная частота системы, для чего рассчитывается АЧХ замкнутой системы по каналу возмущающего воздействия и определяется ее экстремум.

2.    Из условия абсолютной инвариантности системы к возмущающему воздействию строится вектор идеального устройства компенсации на резонансной частоте.

3.    Определяется возможность точной или приближенной компенсации возмущающего воздействия. При этом возможны следующие варианты:

а)  вектор идеального устройства компенсации в третьем или четвертом квадранте (в этом случае расчет настроек компенсатора невозможен);

б)  вектор идеального устройства компенсации во втором квадранте (в этом случае осуществляется приближенная компенсация возмущения);

в)  вектор идеального устройства компенсации в первом квадранте (в этом случае осуществляется точная или приближенная компенсация в зависимости от соотношения расчетного значения коэффициента передачи компенсатора и его максимально допустимого значения).

4. Расчет настроек устройства компенсации.

По окончании расчета настроек компенсатора пользователь имеет возможность построить график переходного процесса в системе с компенсатором и оценить эффективность компенсации возмущения.

Данный комплекс программ написан на языке программирования Turbo Pascal 7.0 с использованием модулей библиотеки Turbo Vision. Язык программирования был выбран исходя из наличия в нем развитых средств поддержки математических вычислений, а также текстового и графического интерфейсов. Во время работы ведется протокол, включающий в себя числовые данные и графики с необходимыми пояснениями.

Комплекс программ реализован в виде отдельных модулей с использованием модульной структуры языка программирования Turbo Pascal 7.0. Назначение отдельных модулей:

КМВ - главный модуль;

P_REG, I_REG, PI_REG, PD_REG, PID_REG - модули расчета настроек соответственно П-, И-, ПИ-, ПД-, ПИД-регулятора;

COMPENS - модуль расчета настроек устройства компенсации;

MYGRAPH - модуль работы с графикой;

MY_VALID - модуль проверки корректности ввода данных;

PROTWORK - модуль работы с протоколом;

OBT_WORK - библиотека РАЧХ и РФЧХ типовых звеньев.

Комплекс программ работоспособен на любой ПЭВМ типа IBM PC XT, AT или IBM PS/2 с 512 Кб оперативной памяти и свободным пространством на жестком диске не менее 2 Мб. Описанный комплекс программ внедрен в учебный процесс в Тверском государственном техническом университете и используется при изучении студентами курса АТПО на кафедре АТП.


Постоянный адрес статьи:
http://swsys.ru/index.php?page=article&id=1065&lang=
Версия для печати
Статья опубликована в выпуске журнала № 1 за 1996 год.

Возможно, Вас заинтересуют следующие статьи схожих тематик: