Публикационная активность
(сведения по итогам 2021 г.)
2-летний импакт-фактор РИНЦ: 0,441
2-летний импакт-фактор РИНЦ без самоцитирования: 0,408
Двухлетний импакт-фактор РИНЦ с учетом цитирования из всех
источников: 0,704
5-летний импакт-фактор РИНЦ: 0,417
5-летний импакт-фактор РИНЦ без самоцитирования: 0,382
Суммарное число цитирований журнала в РИНЦ: 9837
Пятилетний индекс Херфиндаля по цитирующим журналам: 149
Индекс Херфиндаля по организациям авторов: 384
Десятилетний индекс Хирша: 71
Место в общем рейтинге SCIENCE INDEX за 2021 год: 196
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Автоматика. Вычислительная техника": 4
Место в рейтинге SCIENCE INDEX за 2021 год по тематике "Кибернетика" 2
Больше данных по публикационной активности нашего журнале за 2008-2021 гг. на сайте РИНЦ
Добавить в закладки
Следующий номер на сайте
Статьи журнала №1 2017
1. Проектирование интерфейса программного обеспечения с использованием элементов искусственного интеллекта [№1 за 2017 год]Авторы: Зубкова Т.М. (bars87@mail.ru) - Оренбургский государственный университет (профессор), доктор технических наук; Наточая Е.Н. (en_ischa@mail.ru) - Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации (Оренбургский филиал) (доцент), кандидат педагогических наук;
Аннотация: Для разработки качественного ПО необходимо в техническом задании отразить все требования и пожелания заказчика, чтобы у него и у исполнителя сложилось единое представление о будущем программном продукте. Одним из вариантов достижения данного взаимопонимания является разработка прототипа пользовательского интерфейса. В статье описана методика подбора альтернативного варианта шаблона интерфейса, использующая такие методы искусственного интеллекта, как экспертная оценка и теория нечетких множеств. На основе индивидуальных характеристик пользователей можно разделить на пять групп: новичок, обычный, уверенный, квалифицированный, администратор. Выявлены основные параметры индивидуальных характеристик, по которым можно классифицировать пользователей при проектировании интерфейсов: компьютерная грамотность, системный опыт, опыт работы с подобными программами, машинопись, мышление, память, моторика, дальтонизм, концентрация внимания, эмоциональная устойчивость. В статье описано программное и математическое обеспечение для решения задач интеллектуального проектирования пользовательского интерфейса. Поставленная задача выполняется в три этапа. На первом этапе – «Формирование и оценка компетентности группы экспертов» – определяются характеристики экспертов. Количественное описание характеристик экспертов основывается на вычислении относительных коэффициентов компетентности по результатам высказываний специалистов о составе экспертной группы. На втором этапе – «Групповая экспертная оценка объектов при непосредственном оценивании» – определяются рекуррентные отношения для итераций. Третий этап – «Построение нечеткой модели на бинарных нечетких отношениях» – оперирует двумя нечеткими множествами: совокупность групп пользователей и множество шаблонов интерфейсов, максимально эффективных для пользователей с данными характеристиками. Входными данными нечеткой модели являются выделенные нечеткие множества, а выходными – степени соответствия шаблонов интерфейса пользователям. На основе предложенной методики автоматизирован процесс проектирования пользовательского интерфейса с целью повышения объективности и оперативности решений, принимаемых разработчиками ПО.
Keywords: software, user interface, template interface, interface prototype, technical specification, expert estimation, knowledge base, fuzzy relations
Просмотров: 10876
2. Разработка системы хранения ансамблей нейросетевых моделей [№1 за 2017 год]
Авторы: Пучков Е.В. (puchkoff@i-intellect.ru) - Академия строительства и архитектуры Донского государственного технического университета, ул. Социалистическая, 162, г. Ростов-на-Дону (доцент), кандидат технических наук; Терехов С. (isergeiterehov@gmail.com) - Академия строительства и архитектуры Донского государственного технического университета (магистрант);
Аннотация: Важным инструментом в работе специалиста по анализу данных и машинному обучению является ПО для организации экспериментов. Прежде всего это связано с большим количеством этапов в обработке данных и спецификой их выполнения. В ходе работы был спроектирован и разработан прототип системы хранения ансамблей нейросетевых моделей, обеспечивающий структурированное хранение данных на различных этапах решения задачи прогнозирования временных рядов. Рассмотрены модель данных, архитектура системы хранения и механизмы поступления и перераспределения информации в ней. Разработана модель классов для программного взаимодействия с хранилищем. Для хранения данных об объектах и связей между этими объектами была использована MySQL, а для хранения временных рядов – нереляционная БД InfluxDB. Создан пользовательский интерфейс с возможностями наглядного отображения данных и удобного взаимодействия с хранилищем ансамблей нейросетевых моделей. Апробация системы проводилась на примере задачи прогнозирования солнечной активности за период с января 1700 года по февраль 2015 года. Проведенный эксперимент с применением рекуррентной сети LSTM показал, что ошибка ансамбля нейросетевых моделей ниже ошибки каждой отдельно взятой нейросетевой модели. LSTM построена с применением библиотеки Keras, для формирования ансамбля использован подход Blending. Результаты проделанной работы показывают перспективность разработки, обеспечивающей высокую степень интеграции в расширяемые программные продукты на языке Python. Разработка полнофункциональной системы позволит не только организовать процесс анализа данных, но и повысить качество результирующих моделей за счет автоматизации процесса формирования ансамблей.
Keywords: storage, non-relational database, recurrent neural networks, lstm, ensemble, stacking, forecasting time series
Просмотров: 9324
3. Интеллектуальная поддержка принятия решений при диспетчировании технологических процессов в многономенклатурном машиностроении [№1 за 2017 год]
Авторы: Бурдо Г.Б. (gbtms@yandex.ru) - Тверской государственный технический университет (профессор, зав. кафедрой «Технология и автоматизация машиностроения»), доктор технических наук; Семенов Н.А. (dmitrievtstu@mail.ru) - Тверской государственный технический университет (профессор кафедры «Информационные системы»), доктор технических наук;
Аннотация: В последние пятнадцать лет структура машиностроительного и приборостроительного производств претерпела серьезные изменения, обусловленные требованиями заказчиков продукции получать наукоемкие изделия в определенное время. Предприятия указанных отраслей стали разрабатывать и производить одновременно большое число различных изделий, то есть стали многономенклатурными. Исторически многономенклатурные машиностроительные и приборостроительные предприятия не были оснащены автоматизированными инструментальными средствами, позволяющими эффективно управлять технологическими процессами. Это объясняется высокой динамичностью их производственных систем, отсутствием повторяемости находящихся в изготовлении заказов и возникающих производственных ситуаций, а также влиянием значительного числа случайных факторов, нарушающих нормальный ход технологических процессов. В результате срываются сроки поставки продукции и, таким образом, ухудшаются экономические показатели деятельности предприятий и фирм. В связи с этим понятна актуальность создания автоматизированных систем поддержки принятия решений в автоматизированных системам управления технологическими процессами. Диспетчирование технологических процессов имеет своей целью введение их в нормальный график и является одной из важнейших составляющих при управлении ими. В данной работе реализован комбинированный подход к выработке управляющих воздействий. Исходя из наличия большого числа случайных возмущающих воздействий, в автоматизированной системе выполняется учет наиболее значимых и наиболее вероятных из них. Поэтому путем сравнения и анализа планируемых и фактических времен (времена начала и окончания) операций технологических процессов, тенденции развития ситуации (накапливание или уменьшение рассогласования) накапливающимся итогом выявляются наиболее вероятные причины невыполнения плана и возможные управляющие воздействия. Анализ производится с помощью базы знаний, построенной на основе продукционных моделей. Выявленные причины являются «подсказками» для второго этапа. На этом этапе с заранее оговоренной периодичностью или при возникновении исключительной ситуации группой экспертов из числа работников предприятия обсуждаются и оцениваются альтернативы. На основании методики нечеткого управления определяется взвешенная оценка уверенности экспертов в достижимости нужного результата реализацией того или иного управляющего воздействия и принимается окончательное решение.
Keywords: multiproduct machinery production, automated control system of technological processes, production knowledge model, fuzzy control
Просмотров: 6377
4. Реализация методов обучения с подкреплением на основе темпоральных различий и мультиагентного подхода для интеллектуальных систем реального времени [№1 за 2017 год]
Авторы: Еремеев А.П. (eremeev@appmat.ru) - Национальный исследовательский университет «Московский энергетический институт» (профессор), доктор технических наук; Кожухов А.А. (saaanchezzz@yandex.ru) - Национальный исследовательский университет «Московский энергетический институт» (аспирант);
Аннотация: В работе описана реализация методов обучения с подкреплением на основе временных (темпоральных) различий и мультиагентной технологии. Рассмотрены возможности комбинирования методов обучения со статистическими и экспертными методами прогнозирования с целью последующей интеграции в инструментальную программную среду для использования в современных перспективных интеллектуальных системах реального времени типа интеллектуальных систем поддержки принятия решений реального времени. Даны анализ методов обучения с подкреплением (RL-обучения) в плане использования в интеллектуальных системах реального времени, их основные компоненты, преимущества и решаемые задачи. Основное внимание уделено методам RL-обучения на основе временных (темпоральных) различий (TD-методам), разработаны соответствующие алгоритмы. Рассмотрены возможности включения методов RL-обучения в мультиагентную среду и их комбинирования со статистическими и экспертными методами прогнозирования с целью последующей интеграции в инструментальную среду для использования в интеллектуальных системах реального времени типа интеллектуальных систем поддержки принятия решений реального времени для управления и диагностики сложных технических объектов. Разработана архитектура прототипа подсистемы прогнозирования, включающая эмулятор, моделирующий состояние проблемной области (объекта и внешнего окружения), и модули прогнозирования, анализа и принятия решений, RL-обучения. Выполнена программная реализация прототипа подсистемы прогнозирования с применением мультиагентного подхода для решения задачи экспертного диагностирования сложного технического объекта. Результаты тестирования и апробации разработанной системы показали ее достаточную эффективность и целесообразность включения в состав современных интеллектуальных систем поддержки принятия решений реального времени.
Keywords: artificial intelligence, intellectual system, real time, time, reinforcem ent learnin, forecasting, decision support, software
Просмотров: 11017
5. Моделирование воздействия атаки Black Hole на беспроводные сети [№1 за 2017 год]
Авторы: Шахов В.В. (shakhov@rav.sscc.ru) - Институт вычислительной математики и математической геофизики СО РАН (доцент, старший научный сотрудник), кандидат физико-математических наук; Юргенсон А.Н. (nastya@rav.sscc.ru) - Институт вычислительной математики и математической геофизики СО РАН (научный сотрудник), кандидат физико-математических наук; Соколова О.Д. (olga@rav.sscc.ru) - Институт вычислительной математики и математической геофизики СО РАН (старший научный сотрудник), кандидат технических наук;
Аннотация: Технологии, основанные на беспроводных сенсорных сетях, проникают в самые важные сферы жизнедеятельности общества. Многие решения в области архитектуры Интернета вещей опираются на результаты исследований беспроводных сенсорных сетей, в частности, это касается предложений, разработанных в рамках ряда проектов Седьмой рамочной программы Европейского союза по развитию научных исследований и технологий. Следовательно, особое внимание необходимо уделять обеспечению безопасности таких сетей. В статье обсуждаются проблемы функционирования сетей в условиях несанкционированных вторжений. Обеспечить абсолютную защиту, полностью нивелировать последствия вторжений возможно далеко не во всех случаях. Однако эффективный выбор механизмов защиты позволит существенно снизить ущерб. Для этого необходимо разрабатывать и исследовать адекватные математические модели. Авторы рассматривают моделирование атаки Black Hole на узлы беспроводных сенсорных сетей и исследуют оценку нанесенного ущерба. Эта атака является одним из наиболее опасных разрушающих информационных воздействий, в результате ее может теряться более 90 % информации, передаваемой в сток. В качестве модели беспроводной сети используются графы единичных кругов (UDG-графы), которые наиболее адекватно описывают связи в этих сетях, где передача информации между узлами возможна, если они находятся в пределах взаимной достижимости радиосигнала. Для моделирования передачи данных по выбранному алгоритму маршрутизации в графе строится остовное дерево. Авторами получены формулы для вычисления аналитических оценок для некоторых случаев вида остовного дерева. Чтобы оценить уязвимость дерева передачи данных к атакам, использовалась величина «нормированное число вершин, от которых потеряна информация» – среднее число вершин, от которых потеряна информация, деленное на общее число вершин в дереве. Полученные аналитические результаты согласуются с результатами имитационного моделирования. Предложен метод противодействия атакам типа Black Hole, оценена его эффективность.
Keywords: wireless sensor networks, security, black hole attack
Просмотров: 8013
6. Прогнозирование при управлении динамическими системами [№1 за 2017 год]
Авторы: Тиханычев О.В. (tow65@yandex.ru) - 27 Центральный научно-исследовательский институт Минобороны России (старший научный сотрудник), кандидат технических наук;
Аннотация: Условие адекватности управления сложными системами – наличие сведений об их текущем состоянии и условиях функционирования. Обычно такие данные получаются от систем мониторинга обстановки. Но для динамических систем обычный мониторинг не всегда обеспечивает эффективность управления. В ряде случаев ситуацию спасает введение в контур управления обратной связи. Однако этот подход не всегда срабатывает, особенно при управлении крупными распределенными системами, обладающими высокой инерционностью. Для обеспечения эффективности управления необходимо использовать обратную связь: не просто отслеживать состояние системы и окружающей среды, но и получать информацию об их возможных изменениях заблаговременно, то есть использовать методы прогнозирования. В настоящее время принято разделять все методы прогнозирования на активные, оценивающие возможные последствия принимаемых решений, и пассивные, обеспечивающие прогноз изменения состояния в текущих условиях. Предлагается использовать пассивное прогнозирование для формирования обратной связи активного типа, позволяющей формировать управляющие воздействия заблаговременно с учетом прогноза развития обстановки. Анализ состава исходных данных и требований по оперативности прогноза позволяет сделать вывод о целесообразности применения для организации активного мониторинга в существующих условиях именно моделей на основе временных рядов.
Keywords: forecasting, proactive monitoring, mathematical and computer modeling, dynamic systems control
Просмотров: 8820
7. Системы автоматического управления объектами с запаздыванием: робастность, быстродействие, синтез [№1 за 2017 год]
Автор: Тхан В.З. (dungvietthan@gmail.com) - Национальный исследовательский Томский политехнический университет (аспирант); Берчук Д.Ю. (berchukdy@gmail.com) - Национальный исследовательский Томский политехнический университет (аспирант);
Аннотация: Рассматривается задача синтеза систем автоматического управления объектами с запаздыванием. Особенность ее постановки связана с формированием и решением уравнения синтеза численным методом без аппроксимации передаточной функции звена запаздывания. Этим создаются потенциальные возможности для повышения точности синтеза регуляторов. В работе они раскрываются за счет привлечения численного подхода к синтезу регуляторов – вещественного интерполяционного метода. Метод позволяет найти стабилизирующий регулятор по модели желаемой системы автоматического управления, известному неаппроксимированному математическому описанию объекта управления и принятой структуре регулятора. Вторая особенность задачи также связана с принятым методом и звеном запаздывания и реализуется на этапе получения желаемой модели. Для усиления демонстрационных возможностей и наглядности подхода в работе использован минимальный набор показателей – перерегулирование и время установления переходного процесса. Модель желаемой системы совместно с неаппроксимированным описанием объекта управления и принятой структурой регулятора позволили сформировать более точное уравнение синтеза по сравнению с традиционным подходом, основанным на приближении модели звена запаздывания дробно-рациональным выражением. Рассмотрены численный способ решения уравнения синтеза, а также исследование процедуры синтеза и свойств робастности систем с запаздыванием. На этой основе предложен алгоритм достижения максимального быстродействия систем автоматического управления с запаздыванием в условиях поддержания перерегулирования в заданных пределах и показан механизм ухудшения робастности синтезированной системы при увеличении запаздывания сигнала в объекте управления даже в условиях подстройки параметров регулятора под изменяющееся время запаздывания.
Keywords: synthesis of time delay control systems, robustness, speed
Просмотров: 9837
8. Об одном подходе к реализации системы управления мастер-данными об активах [№1 за 2017 год]
Авторы: Сухобоков А.А. (artem.sukhobokov@yandex.ru) - Компания «САП СНГ», кандидат технических наук; Строгонова В.И. (vctrog@gmail.com) - Компания «Оптимальное Управление» (инженер);
Аннотация: В статье рассматриваются возможности современных MDM-систем (систем Master Data Management) и перспективные направления разработки мультидоменных и мультивекторных MDM-систем. Показаны причины, по которым однодоменные системы управления мастер-данными об активах не нашли широкого применения в отличие от существующих систем управления мастер-данными о клиентах, поставщиках, продуктах, сотрудниках и других типах бизнес-объектов. Рассматриваются сложности совмещения различных представлений одних и тех же активов в системе управления мастер-данными об активах. Делается вывод, что, пока не будут разработаны и не начнут успешно внедряться однодоменные системы управления мастер-данными об активах, переносить эту предметную область в мультидоменные системы преждевременно. Для решения описанных проблем предложена модель мастер-данных об активах, позволяющая совместить их различные представления. Эта модель включает множество независимых иерархий для различных представлений одного и того же парка активов, неиерархические связи, специфические для каждой предметной области, решетки связей, позволяющие переходить между разными представлениями одного и того же актива, набор классификаторов активов, классы в которых определяют наборы описывающих активы атрибутов, классификаторы связей активов, а также структурные и функциональные модели отдельных типов активов. Для реализации модели мастер-данных об активах разработана архитектура MDM-системы, а также предложен алгоритм проверки корректности межракурсных связей всей модели в целом. Выдвинуты основные требования к инструментарию для разработки прототипа системы управления мастер-данными об активах: он должен одновременно обеспечивать функциональность графовой СУБД и графового энджина для выполнения сложных алгоритмов над графом в целом. Из двух существующих инструментов, отвечающих этим требованиям, для разработки выбран SAP HANA Graph.
Keywords: mdm solution, master data management of asset data solution, Data Model, system architecture, links integrity checking algorithm, sap hana graph
Просмотров: 8950
9. Построение моделей систем на базе эквациональной характеристики формул LTL [№1 за 2017 год]
Авторы: Кораблин Ю.П. (y.p.k@mail.ru) - Российский государственный социальный университет, г. Москва (профессор), доктор технических наук; Шипов А.А. (a-j-a-1@yandex.ru) - Московский технологический университет (МИРЭА) (старший инженер-программист), кандидат технических наук;
Аннотация: Задача верификации как программных, так и технических систем всегда была и остается одной из самых значимых с момента появления первых вычислительных устройств. Сегодня уже существует достаточно большое количество подходов к решению данной проблемы. Однако именно развитие такого метода формальной верификации, как Model Checking, позволило решить проблему представления верифицируемых систем и унифицировать процесс верификации программных и технических систем. Идея, лежащая в его основе, состоит в приведении исходной системы к некоторой унифицированной форме, то есть для выполнения верификации требуется лишь наличие модели, которая максимально точно описывала бы ее поведение. В данной статье рассматривается возможность построения моделей систем с помощью RLTL-нотации (Recursive Linear Temporal Logic), которая является рекурсивным представлением формул логики линейного времени. Однако ее использование не ограничивается только этим аспектом. Преимущество от использования для этих целей именно RLTL состоит в том, что модели, заданные с ее помощью, могут быть верифицированы относительно требований, заданных на основе RLTL, без перехода к другим структурам данных, что, безусловно, будет способствовать упрощению и повышению быстродействия процесса верификации. Кроме того, в работе предложены формальные средства, позволяющие во многих случаях существенно упростить модель, построенную на основе RLTL, за счет сокращения числа ее состояний и переходов.
Keywords: verification, model checking, rltl equation characteristics, kripke structure, Buchi automaton, temporal logic formula, ltl, ctl
Просмотров: 6960
10. Использование формулы Байеса при оценивании выполнения практик модели CMMI® [№1 за 2017 год]
Авторы: Кожомбердиева Г.И. (kgi-pgups@yandex.ru) - Петербургский государственный университет путей сообщения (доцент кафедры «Информационные и вычислительные системы»), кандидат технических наук; Бураков Д.П. (burakovdmitry8@gmail.com) - Петербургский государственный университет путей сообщения (доцент кафедры «Математика и моделирование»), кандидат технических наук; Гарина М.И. (migarina@gmail.com) - Петербургский государственный университет путей сообщения (доцент), кандидат технических наук;
Аннотация: Статья посвящена методике экспертного оценивания (на основе объективных свидетельств) степени осуществления практик, обеспечивающих реализацию целей процессных областей модели CMMI®, разработанной в Институте программной инженерии Университета Карнеги–Меллона (SEI). Формирование подобных оценок необходимо для получения вывода об уровне зрелости процессов разработки ПО, достигнутом организацией-разработчиком. В условиях неопределенности и/или неполноты исходной информации о выполнении практик CMMI® с целью повышения степени доверия к принимаемым экспертами-оценщиками решениям целесообразно использовать ин-струментарий, применяемый для принятия решений в слабо формализованных предметных областях. Ранее в работах авторов рассматривались два подхода к формированию оценок: методы нечеткой логики и методы многокритериальной классификации. В настоящей статье предпринимаются попытки сделать процедуру экспертного оценивания еще более простой и гибкой, расширить возможности ее использования, повысить объективность оценки. Предлагается подход, основанный на использовании известной в теории вероятностей теоремы гипотез (формулы Байеса). При этом степень реализации практики CMMI® оценивается через распределение вероятностей на множестве гипотез о том, что степень реализации достигла одного из предопределенных уровней. Под байесовской оценкой степени реализации практики понимается апостериорное распределение вероятностей, пересмотренное и уточненное в ходе оценивания. Значения условных вероятностей, используемых при вычислении байесовской оценки, показывают, насколько гипотезы об уровне выполнения практики подтверждаются полученными объективными свидетельствами.
Keywords: cmmi®, process area, capability levels, maturity levels, appraisement, objective evidence, decision theory, Bayes' formula, bayesian approach, expert estimation
Просмотров: 9193
| 1 | 2 | 3 | Следующая → ►