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Abstract. The difference between classical and quantum algorithms (QA) is following: problem solved by QA is coded in
the structure of the quantum operators. Input to QA in this case is always the same. Output of QA says which problem
coded. In some sense, give a function to QA to analyze and QA returns its property as an answer without quantitative
computing. QA studies qualitative properties of the functions. The core of any QA is a set of unitary quantum operators or
quantum gates. In practical representation, quantum gate is a unitary matrix with particular structure. The size of this matrix
grows exponentially with an increase in the number of inputs, which significantly limits the QA simulation on a classical
computer with von Neumann architecture. Quantum search algorithm (QSA) — models apply for the solution of computer
science problems as searching in unstructured data base, quantum cryptography, engineering tasks, control system design,
robotics, smart controllers, etc. Grover’s algorithm is explained in details along with implementations on a local computer
simulator. The presented article describes a practical approach to modeling one of the most famous QA on classical com-

puters, the Grover algorithm.
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Introduction. Applied Quantum
Search Algorithm Model

Grover Quantum Search Algorithm (QSA) is
one of the famous quantum algorithms (QA) that
outperform their classical counterparts [1-4].
In the conventional linear search algorithm, it re-
quired O(N) comparisons to find an element in an

array of length N. Grover’s algorithm achieves a
guadratic speed up; i.e., it has a complexity of

C’)(\m ) Grover’s search algorithm provides an

example of the speed-up that would be offered by
guantum computers (if and when they are built)
and has the important application in solution of
global optimization control problems. The prob-
lem solved by Grover’s algorithm is finding a
sought-after ("marked™) element in an unsorted
database (DB) of size N. To solve this problem,

a classical computer would need % database que-

ries on average, and in the worst case it would N -1
queries.

Thus, using Grover’s algorithm, a quantum
computer can find the marked state using only

(’)(«/ﬁ) quantum data queries. In the case of M

"marked" elements in an unsorted DB of size N
speed-up of quantum search process increases as

O( /%] . Itis believed that this complexity is op-

timal. This speed up is inherently due to the paral-
lel computational nature of quantum operators that
can affect all of the coefficients in the state expan-
sion at once.

General design structure
of quantum algorithms

A quantum algorithm calculates the qualitative
properties of the function f.

From a mathematical standpoint, a function f is
the map of one logical state into another.

The problems solved by a QA can be stated as
follows:

Given a function f :{0,1}"—>{0,1}™; find a cer-
tain property of the function f.

Or in the symbolic form as:

Input: A function f:{0,1}"—>{0,1}".

Problem: Find a certain property of f.

Figure 1 is a block diagram showing a gate ap-
proach for simulation of a QA using classical com-
puters [5]:

In Fig. 1, an input is provided to a QA and the
QA produces an output. However, the QA can be
transformed to produce a quantum algorithmic
gate (QAG) such that an input vector (correspond-
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ing to the QA input) is provided to the QAG to pro-
duce an output vector (corresponding to the QA
output) [5].

Figure 2 shows classification tree of QA’s for
guantum soft computing and control engineering
applications. QA’s are either decision-making or
searching as described above.

‘ Quantum Algorithms ‘

‘ Decision Making ‘ ‘ Searching ‘
Deutsch’s v Shor’s
Deutsch-Jozsa’s Grover’s

i ,

Quantum Genetic Search
Algorithm

A Y

Robust Knowledge Base Design /

for Fuzzy Controllers

Fig. 2. Classification of quantum algorithms

As shown, as example, in Fig. 2, Quantum Ge-
netic Search Algorithms (QGSA) follows from
Grover’s and Shor’s algorithms, and background
for Robust KB design of Fuzzy Controllers follows
from Deutch’s, Deutch—Josa’s, Grover’s and/or
Shor’s algorithms (see in details [4, 5]).

Let us briefly consider the design process of
QAG.

Figure 3 is a block diagram showing the design
process of the QAG.

In Fig. 3 an input block of the QA is a function
f that maps binary strings into binary strings. This
function f is represented as a map table, defined for
every string its image. The function is first en-
coded into a unitary matrix operator Ur depending
on the properties of f. In some sense, this operator
calculates f when its input and output strings are
encoded into canonical basis vectors of a complex
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Hilbert space. The operator Ur maps the vector
code of every string into the vector code of its im-
age by f. The quantum block operates on basis vec-
tors in a complex Hilbert space. The vectors oper-
ated on by the quantum block are provided to a de-
coder, which decodes the vectors to produce an
answer.

Once generated, the matrix operator Ug is em-
bedded into a quantum gate G. The quantum gate
G is a unitary matrix whose structure depends on
the form of matrix Ug and on the problem to be
solved. The quantum gate is a unitary operator
built from the dot composition of other more spe-
cific operators. The specific operators are de-
scribed as tensor products of smaller matrices.

General structure of the
QAG design method

Traditionally QA is written as a quantum cir-
cuit [2].

Figure 4 shows the general structure of a quan-
tum circuit for a QAG.

As shown in Fig. 4, the general structure of the
quantum circuit is based on three reversible quan-
tum operators (superposition, entanglement, and
interference) and irreversible classical operator
measurement.

The quantum circuit is a high-level description
of how these smaller matrices are composed using
tensor and dot products in order to generate the
final quantum gate as shown in Fig. 4 (see in de-
tails [4, 5]). Thus, the mathematical background of
this approach is based on mappings between the
quantum block operations in the complex Hilbert
space [2].

The encoder and decoder operate in a map table
and interpretation space, and input/output occurs
on a binary string level. The Clifford and Pauli
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Fig. 4. The structure of a quantum circuit

groups are the background for universal QAG de-
sign for simulation of a QA’s on classical comput-
ers. Therefore, the general structure of the QAG is
based on three quantum operators as superposi-
tion, entanglement, and interference, and measure-
ment is irreversible classical operation.

The QAG acts on an initial canonical basis vec-
tor to generate a complex linear combination
(called a superposition) of basis vectors as an out-
put. This superposition contains the full infor-
mation to answer the initial problem. After the su-
perposition has been created, measurement takes
place in order to extract the answer information.
In quantum mechanics, a measurement is a non-
deterministic operation that produces as output
only one of the basis vectors in the entering super-
position. The probability of every basis vector of
being the output of measurement depends on its
complex coefficient (probability amplitude) in the
entering complex linear combination.

Thus, the segmental action of the quantum gate
and of measurement makes up a quantum block
(see Fig. 3). The quantum block is repeated k times
in order to produce a collection of k basis vectors.
Since measurement is a non-deterministic opera-
tion, these basis vectors will not necessarily be
identical, and each basis vector encodes a piece of
the information needed to solve the problem. The
last part of the algorithm involves interpretation of
the collected basis vectors in order to get the final an-
swer for the initial problem with some probability.

Peculiarities of general QA-structure

As mentioned above, QA estimates (without
numerical computing) the qualitative properties of
the function f. From a mathematical standpoint, a
function f is the map of one logical state into an-
other. The problem solved by a QA can be stated
in the symbolic form as follows:

Find a certain property of function f that is a
map f:{0,1}" —>{0,1}".

Main goal of QA applications is the study and
search of qualitative properties of functions as the
solution of problem. Figure 5 shows the general
structure of QA.

The main blocks in Fig. 5 are following: i) uni-
fied operators; ii) problem-oriented operators; iii)
Benchmarks of QA simulation on classical com-
puters; and iv) quantum control algorithms based
on quantum fuzzy inference (QFI) and QGA as
new types of QSA. The design process of QAG’s
includes the matrix design form of three quantum
operators: superposition (Sup), entanglement (Ug) —
oracle, and interference (Int) that are the back-
ground of QA structures.

Quantum massive parallel computing

Quantum knowledge Soft computing
base optimizer optimizer
[ Answer }[ QC output j—[ QAG design ]—[ Classical input j[ Problem }

|¥..) = [ (Interference)(Quantum oracle) ] (Superposition) [¥\.)

I I I

Qp‘r’:l"':r‘[‘l';’: Quantum Fourier Problem oriented Hadamard oo
e ion transformation operator transformation broperties

[ Qualltatxigzﬁry)‘emes of H Quantum oracle black box

Fig. 5. General structure of QA

In general form, the structure of a QAG for QA
in Fig. 5 can be [5] described as follows:

{Ue} } ["He"s] (1)

function property

QAG = | (Int®" |
(mer1)

where | is the identity operator; the symbol ® de-
notes the tensor product; S is equal to | or H and
dependent on the problem description. The heart of
the quantum block is the quantum gate, which de-
pends on the properties of matrix Ug. One portion
of the design process in Eq. (1) is the type-choice
of the entanglement problem dependent operator
Ue that physically describes the qualitative proper-
ties of the function f.

A general QA, written as a quantum circuit
(as in Fig. 4), can be automatically translated into
the corresponding programmable quantum gate for
efficient classical simulation. This gate is repre-
sented as a quantum operator in matrix form such
that, when it is applied to the vector input repre-
sentation of the quantum register state, the result is
the vector representation of the desired register
output state.
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Main QAG’s and main quantum operators
. Possibi!ity of successful [ Analysis of QA’s Dynamics
Three quantum operators, superposition, en- soluton gi“gj;:)ssafy 18| and Design
tanglement (quantum oracle), and interference, 3

are the basis for quantum computations of quali-
tative and quantitative measures in quantum soft
computing.

As described above (see Fig. 3) the structure of
a QAG based on these three quantum operations of
superposition, entanglement, and interference.
Thus, superposition, entanglement (quantum ora-
cle) and interference in quantum massive parallel
computing are the main operators in QA. The su-
perposition operator of most QA’s can be ex-

pressed as following: Sp = (éHj@[%Sj where

n and m are the numbers of inputs and of outputs
respectively. Operator S may be or Hadamard op-
erator H or identity operator | depending on the al-
gorithm. Numbers of outputs n as well as struc-
tures of corresponding superposition and interfer-
ence operators are presented in the Table 1 for
different QA’s on Fig. 2.

Table 1

Parameters of superposition and interference
operators of main QA

Algorithm Superposition | m |Interference
Deutch’s H®I 1 H®H
Deutsch—Jozsa’s| "H ® H 1|"H® I
Grover’s "H® H 1 Di®I
Simon’s "H® " ni"H®"
Shor’s "H® " n|QFT,®"l

Figure 6 shows methods in QAG design. The
methods as shown in Fig. 6 are based on qualitative
measures of QAG design: 1) analysis of QA dy-
namics and structure gate design; 2) analysis of in-
formation flow; and 3) structure simulation of in-
telligent QA’s on classical computers.

Remark. The analysis of information flow
in [4, 5] is described. In this article analysis of QA
dynamics and structure gate design, and structure
simulation of intelligent QA’s on classical com-
puters are discussed.

As shown in Fig. 6 analysis of QA dynamics
provides the background for showing the existence
of a solution and that the solution is unique with
the desired probability. Analysis of information
flow in the QA gates provides the background for
showing that the unique solution exists with the de-
sired accuracy and that the reliability of the solu-
tion can be achieved with higher probability.

The intelligence of a QA is achieved through
the principle of minimum information distance
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Fig. 6. Methods in QAG Design

between Shannon and von Neumann entropy and
includes the solution of the QA stopping problem
(see [5]). The output states of a QA as the solution
of expected problems are the intelligent states
with minimum entropic relations of uncertainty
(coherent superposition states). The successful
results of QA computing are robust to noise exci-
tations in quantum gates, and intelligent quantum
operations are fault-tolerant in quantum soft com-
puting [5].

With the method of quantum gate design pre-
sented herein, various different structures of QA
can be realized (see Fig. 4), as shown in Table 2
below.

Remark. A quantum computer is difficult to
build because of decoherence effects. Decoher-
ence introduces errors in the superposition. The
decoherence problem is reduced by using tools of
quantum soft computing such as a QGSA. Errors
produced by decoherence are of three kinds: (i)
phase errors; (ii) bit-flip errors; and (iii) both phase
and bit-flip errors.

These three errors can all be modeled using
unitary transformations [5].

This means that if the QGSA is implemented
on a physical quantum-mechanical system, one
would gain the advantages of quantum parallelism
and reduce the problem of decoherence, because
decoherence can be used as a natural generator of
mutation and crossover operators.

Let us discuss briefly any mathematical back-
grounds and its physical peculiarities for quantum
computing based on QAG.
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Quantum gate parameters for QA’s structure design

Table 2 After these two queries, we can

measure qubit 1 with a deterministic

Name Algorithm

h+1

Interference Entanglement

Gate Symbolic Form;

"H®"S
NLLEC

outcome, and answer whether f(0) =
= f(1). However, a quantum checker
can apply Us to a linear combination
J of states in the computational basis.
Count how many applications of this

Superposition

T -

Deutsch—
Jozsa
(D.-J)

5«3
|
I

H (nH®I).UFD—J.(n+1H)

operation or oracle calls are needed to
find the item. The rationale behind the
Grover algorithm is: 1) to start with a
guantum register in a state where the
computational basis states are equally

3|5 =

Simon
(Sim)

~~
>

o o
8¢:

("He")-um("He")

present; 2) to apply several unitary
transformations to produce an out-
come state in which the probability of
catching the marked state |xo) is large

=~ >

Shor
(Shr)

=]
— 1l

(QFT, ®"1)-Uf"-("H® ")

enough.

Let's imagine the stages of Gruver's
algorithm:

Step 1. Initialize the quantum regis-
ters to the state:

Grover
(Gr)

>
—~ 1l

(D, ®1)-Ug"-("H)

S XS WwW3I|oOCx-w3|Tx

|y, =input):=|00...0)[1). ®3)
Step 2. Apply bit-wise the Hada-
mard one-qubit gate to the source regis-
ter, so as to produce a uniform superpo-
sition of basis states in the source regis-

Design technology of and QAG
simulation system

The searching problem can be stated in terms
of a list £[0,1,...,N —1] with a number N of un-

sorted elements. Denote by Xo the marked element
in £ that are sought. The quantum mechanical so-
lution of this searching problem goes through the
preparation of a quantum register in a quantum
computer to store the N items of the list. This will
allow exploiting quantum parallelism. Thus, as-
sume that the quantum registers are made of n
source qubits so that N = 2".

A target qubit is used to store the output of
function evaluations or calls. To implement the
quantum search, construct a unitary operation that
discriminates between the marked item Xo and the
rest. The following function:

fxo(x)z{o, if XX, | @

1if x=x,
and its corresponding unitary operation U W |X>| Y> =

=|x>| yof, (x)> It is assumed the access to f via
the following quantum oracle: U¢|0,0) = |0, f(0)),

Ut|1,0) =10, f(1)).

ter, and also to the target register:

e 1 2"-1
[ve) =03 ) = Sz 210 2 (1) @)

y=0,1

Step 3. Apply the operator U -

1 & x
) =V, 1) = g (010 (2 1),
X= y=0,
Let U, be the operator by
_ b, i x=x
Uxo|X>'_(1_2|X0><XO|)|X>_ —Ix), If X =X ' (5)
0 0

that is, it flips the amplitude of the marked state leav-
ing the remaining source basis states unchanged.
The state in the source register of Step 3 equals pre-

cisely the result of the action of U, , ie., |y3) =

=((1-21% )06 ) ®1) ).

Step 4. Apply next the operation D known as in-
version about the average. This operator is defined as
follows

D=-(U"®1)U, (U ®I),
and
|output) = D|vy,)
where U is the operator in Step 3 for xo = 0. The

Xo !

effect of this operator on the source is to transform

Yo [-Y(o, +@)]x), ©
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where (o) ==2">"a, isthe mean of the amplitudes,

S0 its net effect is to amplify the amplitude of [xo) over
the rest.

Step 5. Iterate Steps 3 and 4 a number of times m.

Step 6. Measure the source qubits (in the compu-
tational basis). The number m is determined such that
the probability of finding the searched item xo is max-
imal.

According to Steps 2—4 above and (1), the QAG

of Grover’s QSA is G=(D,®!)-U, ("H®H) that

acts on the initial state of both registers in the QSA.

Computational analysis of Grover’s QSA is
similar to analysis of the Deutsch—-Jozsa QA. The
basic component of the algorithm is the quantum
operation encoded in Steps 3 and 4, which is re-
peatedly applied to the uniform state |y2) in order
to find the marked element. Steps 5 and 6 in
Grover’s algorithm are also applied in Shor’s
QSA. Although this procedure resembles the clas-
sical strategy, Grover’s operation enhances by
constructive interference of quantum amplitudes
the presence of the marked state.

Computational models of QSA

We have considered in [4] five practical ap-
proaches to design fast algorithms for the simula-
tion most of known QA’s on classical computers:

1. Matrix based approach;

2. Model representations of quantum opera-
tors in fast QA’s;

3. Algorithmic based approach, when matrix
elements are calculated on “demand”;

4. Problem-oriented approach, where we suc-
ceeded to run Grover’s algorithm with up to 64 and
more qubits with Shannon entropy calculation
(up to 1024 without termination condition);

5. Quantum algorithms with reduced number
of operators (entanglement-free QA, and so on).

Detail description of these approaches is given
in [4].

Figure 7 shows the structure description of the
QA Benchmark Block.

The efficient implementations of a number of
operations for quantum computation include con-
trolled phase adjustment of the amplitudes in the
superposition, permutation, approximation of
transformations and generalizations of the phase
adjustments to block matrix transformations.
These operations generalize those used as example
in QSA’s that can be realized on a classical com-
puter. The application of this approach is applied
herein to the efficient simulation on classical com-
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puters of the Deutsch QA, the Deutsch—Jozsa QA,
the Simon QA, the Shor QA and the Grover QA.

Implementation of a QA is based on a QAG.
In the language of classical computing, a quantum
computer is programmed by designing a QAG.
The prior art reports relatively few such gates be-
cause the basic principles underlying the quantum
version of programming are in their infancy and
algorithms to date have been programmed by ad-
hoc techniques.

The problems solved by the QA can be stated
as follows:

Input: A function f:{0,1}"—{0,1}™.

Problem: Find a certain property of f.

The structure of a quantum operator Us in QA’s
as shown in block of Fig. 3 is outlined, with a high-
level representation, in the scheme diagram Fig. 1.
In Fig. 3 the input of the QA is a function f that
maps from binary strings into binary strings. This
function is represented as a map table, defining for
every string its image. The function f is encoded
according to an F — truth table. The function is
transformed according to a transform Us — truth ta-
ble into a unitary matrix operator Us depending on
f’s properties. In some sense, this operator calcu-
lates f when its input and output strings are en-
coded into canonical basis vectors of a complex
Hilbert space: Us maps the vector code of every
string into the vector code of its image by f.
A squared matrix U on the complex field is uni-
tary if and only if (iff) its inverse matrix coincides
with its conjugate transpose:U: ' =U_. A unitary

matrix is always reversible and preserves the norm
of vectors.

Figure 8 shows structure of the quantum block
from Fig. 3.

In the structure, the matrix operator Ur has
been generated it is embedded into a quantum gate
as a QAG, a unitary matrix whose structure de-
pends on the form of matrix Ur and on the problem
to be solved. In the QA, the QAG acts on an initial
canonical basis vector (which can always choose
the same vector) in order to generate a complex
linear combination (superposition) of basis vectors
as output. This superposition contains all the infor-
mation to answer the initial problem.

After this superposition has been created, in
measurement block takes place in order to extract
this information. In quantum mechanics, measure-
ment is a non-deterministic operation that pro-
duces as output only one of the basis vectors in the
entering superposition. The probability of every
basis vector of being the output of measurement
depends on its complex coefficient (probability
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Fig. 7. Algorithm modeling system in Quantum Fuzzi Modelling System

*_ limited by spatio-temporal complexity, number of qubits includes measurement and calculation basis;

*%_ Limited by floating numbers point representation

amplitude) in the entering complex linear combi-
nation.

The segmental action of the QAG and of meas-
urement characterizes the quantum block in Fig. 8.
The quantum block is repeated k times in order to
produce a collection of k basis vectors. Since
measurement a nondeterministic operation, these
basic vectors are not be necessarily identical and
each one of them will encode a piece of the infor-
mation needed to solve the problem. The collection
block in Fig. 8 of the algorithm outputs the inter-
pretation of the collected basis vectors in order to
get the answer for the initial problem with a certain
probability.

Encoder

The behavior of the encoder in Fig. 3 is de-
scribed in the scheme diagram of Fig. 9.

Function f is encoded into matrix Ur in three
steps.

In step 1, the map table (f — truth table) of func-
tion f :{0,1}"—{0,1}™ is transformed into the map
table (F — truth table) of the injective function
F :{0,1}™"{0,1}™™ such that:

F(XO""anl’ yov"l ymfl) =
= (X1 F (X2 @ (Yoo Vi)

Remark. The need to deal with an injective
function comes from the requirement that Ur is

unitary. A unitary operator is reversible, so it can-
not map two different inputs in the same output.
Since Ugr will be the matrix representation of F, F
is injective. If one directly employed the matrix
representation of function f, one could obtain a
non-unitary matrix, since f could be non-injective.
So, injectivity is fulfilled by increasing the number
of bits and considering function F instead of func-
tion f. The function f can be calculated from F by
putting (yo, ..., Yym-1) = (0, ..., 0) in the input string
and reading the last m values of the output string.

Repeated k
times
Input
Vector
INPUT ]
U- By Gate
Output
Vector
Measurement
i OUTPUT
Collecting Basis
Vector Vectors
Fig. 8. Structure of quantum
block in Fig. 3
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|
|
|
|
|
|
|
T
|
|

[

Encoder:

F —m. table — U, —m. table

[

U —m. table

OUTPUT
» Ur

Fig. 9. The encoder block scheme diagram

Reversible circuits realize permutation opera-
tions. It is possible to realize any Boolean circuit
F :B" — B" by reversible circuit. For this case,
one need not calculate the function F:B" —B".
One can calculate another function with expanding
F,:B"™™ — B"™ that is defined as following re-

lation: F, (x,y)=(x y®F(x)) where the opera-
tion ® is defined as addition on module 2.

Then the value of F(x) is defined as F, (x,0) =
=(xF(x)). For example, the XOR operator be-

tween two binary strings p and g of length m is a
string s of length m such that the i-th digit of s is
calculated as the exclusive OR between the i-th
digits of p and q:

P=(Posss Prs) 0= (0o, );S = POG =

= (( Po +QO)m0d 2""’( P+ qn—l)mOd 2))

In step 2, the function from F map table is

transformed into Us map table, according to the
following constraint:

vse{0,"" :U[x(s)]=1[F(s)] (7)
The code map
2n+m .
o {0,1}n+m N C® isthe _target
Complex Hilbert Space
is such that:

()= o100 == 3 -1

T(Xgree s Xoymer ) = T(X ) ® .. ®T(X oy ) =

=[Xg - Xyyms)-

Code rmaps bit values into complex vectors of
dimension 2 belonging to the canonical basis
of C2. Besides, using tensor product, = maps the
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general state of a binary string of dimension n into
a vector of dimension 2", reducing this state to the
joint state of the n bits composing the register.
Every bit state is transformed into the correspond-
ing 2-dimesional basis vector and then the string
state is mapped into the corresponding 2"-dime-
sional basis vector by composing all bit-vectors
through tensor product. In this sense tensor prod-
uct is the vector counterpart of state conjunction.
Basis vectors are denoted using the ket notation |i).
This notation is taken from Dirac description of
guantum mechanics.

In step 3, the Ur map table is transformed into
Ue using the following transformation rule:

[UF]ij :1<:>UF | J> =|i> ’

This rule can be understood by considering
vectors |iy and | j) as column vectors. These vectors
belong to the canonical basis, where Ur defines a
permutation map of the identity matrix rows. In
general, row | j) is mapped into row |i.

Quantum block

The heart of the quantum block is the quantum
gate, which depends on the properties of matrix
Ug. The quantum block uses the QAG, which de-
pends on the properties of matrix Ug. The structure
of a quantum operator Ur in QA’s as shown in Fig. 3
is outlined, with a high-level representation, in the
scheme diagram of Fig. 8.

The scheme in Fig. 8 gives a more detailed de-
scription of the quantum block. The matrix opera-
tor Ur of Fig. 9 is the output of the encoder block
represented in Fig. 3.

Here, it becomes the input for the quantum
block. This matrix operator is embedded into a
more complex gate: the gate G (QAG). Unitary
matrix G is applied k times to an initial canonical
basis vector |iy of dimension 2™™, Each time, the
resulting complex superposition G |0...01...1) of
basis vectors is measured in measurement block,
producing one basis vector [|x;) as result. The meas-
ured basis vectors {xi, ..., xx} are collected to-
gether in block of basis vectors.

This collection is the output of the quantum
block. The “intelligence” of the QA’s is in the abil-
ity to build a QAG that is able to extract the infor-
mation necessary to find the required property of f
and to store it into the output vector collection.

In order to represent QAG’s it is useful to em-
ploy some diagrams called quantum circuits, as
shown in Fig. 4. Each rectangle is associated with
a matrix 2" x 2", where n is the number of lines
entering and leaving the rectangle. For example,
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the rectangle marked Ur is associated with the
matrix Ur.

Using a high-level description of the gate and,
using transformation rules shown in Fig. 10, it is
possible to compile the corresponding gate-matrix.

Decoder

The decoder block of Fig. 3 interprets the basis
vectors (collected in block basis vectors) of after
the iterated execution in the quantum block. De-
coding these vectors involves retranslating them
into binary strings and interpreting them directly in
decoder block if they already contain the answer or
use them, for instance as coefficients vectors for
some equation system, in order to get the searched
solution.

Grover's Problem statement

Grover’s quantum searching problem is stated
as following:

Design process of Grover’s QAG

Let us consider the implementation of Grover
QSA steps in QAG design.

A. Introductory example Consider the case:
n =2, f(01) = 1. In this case the f map table (see
Fig. 9) is defined by:

X f(x)

00 0

01 1

10 0

11 0
Step 1

Function f is encoded into injective function F,
built according to the usual statement:

F :{0,1}n+l N {0,1}n+1 T F (X0 X0 Yo ) =

:(XO'Xl’ f (Xo*xi)@ yo)-
Then the F map table is:

Input: Given a function f :{0,1}"—{0,1} such (Xo, X1, Yo) F(Xo, X1, Yo)
that 000 000
2 [ f(X)=1Aavye{01}": 010 011
Ixe {01 : 100 100
xzy=f(y)=0
. 110 110
Problem: Find x. 001 001
Figure 11 shows the definition of the Grover's 011 011
problem.
Figure 12 shows step design definitions in 101 101
Grover's QA. 111 111
t@——b » »
§ = M®..OM; Ll M e M fe =i MMy
» M. —p » >
Step Step Step 1 Stepr Step
@ (b)
| —ip= » x> —> bit x> -—> Mx>
Step Step Step Step
(d)
xa > P Iys >/ bit
. X>®.. QX >
M L= — M-
’ e > @ly: > i
Step Step e > » |y, >/ bit
® ;ep Step

®)

Fig. 10. Transformation rules

These rules are listed in Fig. 10 as following: (a) Rule 1 — Tensor Product Transformation;
(b) Rule 2 — Dot Product Transformation; (c) Rule 3 — Identity Transformation; (d) Rule 4 — Propagation Rule;
(e) Rule 5 — Iteration Rule; and (f) Rule 6 — Input/Output Tensor Rule.
It will be clearer how to use these rules when we afford the first examples of quantum algorithm
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Property of functi

on f

f(XE{O,l}n):{

1 X=X,
0, X # X,

Quantum
Search
Algorithm

| Probabilistic solution: xo

A

4

Random Searching

A 4

Output

Fig. 11. Grover’s QA: Problem definition

Step 2
Now encode F into the map table of Ur using

the usual rule: Vs € {01} U, [1(s)]=[ F(s)]
where 7 is the code map defined in above. This

case n > 1. The operator C is found on the main
diagonal of the block matrix, in correspondence of
the celled labeled by vector |[x>, where x is the bi-
nary string having image one by f. Therefore:

means:

[Xo X1 yo> UF |Xo X1 Yo>
|000> |000>
[010> [011>
|100> |100>
[110> [110>
|001> |001>
[011> [011>
[101> [101>
[111> [111>
Step 3

From the map table of Ug calculate the corre-
sponding matrix operator. This matrix is obtained

using the rule: [U.]. =1<U|j) =|i).

ij

Uk is thus:

Ur [00> 01> [10> [11>
|00> [ 0 0 0
|01> 0 C 0 0
10> 0 0 I 0
11> 0 0 0 |

The effect of this matrix is to leave unchanged
the first and the second input basis vectors of the
input tensor product, flipping the third one when
the first vector is |0> and the second is |1>. This
agrees with the constraints on Ug stated above.

B. General case with n = 2. Now take into con-
sideration the more general case:n =2, f(x)=1.

The corresponding matrix operator is:

Ur 00> 01> 1>
|00> Moo 0 0
|01> 0 Moz 0
|1l> 0 M1

0
with M, =CAVizx:M; =1
Quantum block

The matrix Ur, the output of the encoder, is em-
bedded into the QAG.

Ue |00> |01> |10> 11>
|00> Moo 0 0 0
|01> 0 Moz 0 0
|10> 0 0 M1o 0
[11> 0 0 0 M1y

with M, =CAVizXx:M, =1

C. General case It is relatively simple now to
generalize operator Ur from the case n = 2 to the
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N Design step definition

Step 0: Encoder

Step 0.1: Injective function F building
Step 0.2: Preparation of map table

for entanglement operator Ur

Step 1: Preparation of quantum operators
Step 1.1: Preparation of superposition
operator

1 | Step 1.2: Preparation of entanglement
operator using information from step 0.2
Step 1.3: Preparation of interference operator
Step 1.4: Quantum gat

Step 2: Algorithm execution

Step 2.1: Application of superposition
operator

Step 2.2: Application of entanglement

2 | operator

Step 2.3: Application of interference operator
Step 2.4: Repeat steps 2.2 and 2.3 h times
Step 2.5: Measurement and interpretation

of the output

Fig. 12. Grover’s QA: Steps
of the algorithm design

Encoder: In order to make the discussion more
comprehensible, it is convenient to first consider
a special function with n = 2, then the general
case with n = 2 is discussed, and finally
to analyze the general case withn >0
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This gate is described in Fig. 13a, using a quan-
tum circuit of Grover QSA.

Operator Dy is called a “diffusion matrix” of or-
der n and it is responsible for interference in this
algorithm. It plays the same role as the QFT, in
Shor’s algorithm and of "H in Deutsch-Jozsa’s and
Simon’s algorithms. This matrix is defined as:

Dn ||0..0> ]0.1> ... [i> . 10> 11>
[0..0>[1+1/2™ 1/2"! .o12m R VAL VU
1
[0.1>[1/2™1  1+1/2™ ... 1/2™! Lo12m g2t
1
li> |12mt 172t Co1+12™0o12mt 12
1
[1..0>[1/2™1  1/27t .12 . 1+1/2™ 120t
1
[1.1>[1/2™1  1/2mt . 12t L2 1+1/2v
1

Using Rule 3 from Fig. 10, compile the previ-
ous circuit into the circuit presented as in the Fig.
13, b, and then into the circuit of Fig. 13c and using
Rule 2 in Fig. 10 design on Fig. 13d.

Computer design process of Grover’s QAG
and simulation results

Consider the design process of Grover’s QAG
according to the steps represented in Fig. 12.

Figure 14 shows Step 0, the encoding process,
for the case of order n = 3 and answer search 1.

Preparation of quantum entanglement (step 1.2
from Fig. 12) for the one answer search is shown
in Fig. 15.

The cases for 2 and 3 answer searches if the
preparation of the entanglement operator is shown
by the link http://www.swsys.ru/uploaded/image/
2023-4/17.jpg.

Figure 16 shows the result of interference op-
erator design (step 1.3 of Fig. 12).

Comparison between superposition and inter-
ference operators in Grover’s QAG is shown in
Fig. 17.

The Grover’s QAG assembly (step 1.4 of Fig. 12)
is shown by the link http://www.swsys.ru/uploaded/
image/2023-4/18.jpg.

The assembled entanglement and interference
operators in gate representation (step 1.4 from
Fig. 12) are presented by the link http://www.
swsys.ru/uploaded/image/2023-4/19.jpg.

Dynamic evolution of successful results of al-
gorithm execution for the first iteration of Grover’s
QAG for initial qubits state [0001) and different
answer search is shown in Fig. 18.

The algorithm execution results for Grover’s
QSA with different number of iterations for suc-
cessful results with different searching answer
number are presented by the link http://www.
swsys.ru/uploaded/image/2023-4/20.jpg.

The results of the execution of the RSA En-
graver algorithm with a different number of itera-
tions for successful results with different searching
answer number

(@)

0B (@O0 Tl (H) | e
! [ouTPuT

<:| —if mn
[ BRI

‘ STEP1 STEP2 ‘

Fig. 13. Grover’s quantum algorithm simulation: Circuit representation and corresponding gate design
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LLx=011

(xe {01V =
JEEOL) 0.x#011

Lx =101
0.x=101

fxefoa}) ={

e e R

—————

flxe {OJ}:«):{L.\‘:OII

/’_d/ e i
z[F (s )]‘ Ses0L)= {o. x#101

‘(]F [T(‘)] =

l,x=101

0.x=011

Entanglemert operator

Fig. 15. Grover’s QA: Step 1.2. Preparation
of quantum operators: Entanglement operators for 1 answer search

. (1
D,®I=D,®| :

Fig. 16. Grover’s QA: Step 1.3. Preparation of quantum operators: Interference operator

Figure 19 is a 3D dynamic representation
of Grover’s QAG probabilities evolution (step 2 of
Fig. 12) for different cases of answer search.

Interpretation of measurement results
in simulation of Grover’s QSA-QAG

In the case of Grover’s QSA this task is
achieved (according to the results of this section)
by preparing the ancillary qubit of the oracle of the
transformation:

534

U, :[x.a) =] x f(x)@a)

in the state lag) = (|0>—|1))- In this case the ope-

1
2
rator I is computationally equivalent to

)
UpU{\x)@%(‘o)_m)}:
=['\M>(\X>)]®%(\o>-\1>)=
“Fle 1 -l (e

Measurement Measurement

Computation result Computation result
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1) 1

=1 | V2

Superposition

1
1

b2

Interference

Fig. 17. Grover’s QA: Superposition and interference operators

Wl raeforf)= ‘

Lx=011
0,x= 011

flxe

e

[Lx=101 ~
“lox=101

3
015

flxelolf)=

[Lxefor0100010}3 || ..
10.x e for0100.1103 | £

3| fxeforp)=

[Lxe{01L101}
|0.xe{01L101}

Fig. 18. Grover’s QA: Algorithm execution. First Iteration

and the operator Ur is constructed from a con-
trolled I, , and two one qubit Hadamard transfor-
mations.

Let's show the interpretation of the Grover
QAG results.

%)

If measured basis vector: |X$ -~X§X§“> .
n+1qubits
Consist of:
1 n n+l

nqubits of computational basis ~ 1qubit of measurement basis

Then searched argument was:

Answer of
X, =Xg -+ X} t = Quantum .
%,_J .
nbits Searching

Measured basis vector are computed from the
tensor product between the computation qubit re-

sults and ancillary measurement qubit. In Grover’s
searching process, the ancillary qubit does not
change during the quantum computing.

As described above, operator Us is constructed
from two Hadamard transformations and the Hada-
mard transformation H (modeling the constructive
interference) applied on the state of the standard
computational basis can be seen as implementing a
fair coin tossing. Thus, if the matrix

1
2
standard basis, then H?0) = —|1), H?1) = |0), and
therefore H? acts in measurement process of com-
putational result as a NOT-operation, up to the
phase sign. In this case, the measurement basis
separated with the computational basis (according
to tensor product).

11
[1 _J is applied to the states of the
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The results of simulation are shown in Fig. 20a.
Figure 20b shows the results of computation on a
classical computer.

Figure 20b shows two possibilities:

{|0110)} =|01)®  |0)
Result Measuremeb qubitt
and
0 g

{lo111)} =|01D) ®

Result

19
Measuremeb qubitt
A similar situation is shown in Fig. 20b.
Figure 20b demonstrate also two searching
marked states:

A similar situation is shown for three searching
marked states in Fig. 20b.

Using a random measurement strategy based
on a fair coin tossing in the measurement basis
{|0), |1)} one can independently receive with cer-
tainty the searched marked states from the meas-
urement basis result. Figure 20c show accurate re-
sults of searching of corresponding marked states.
Final results of interpretation for Grover’s algo-
rithm are shown in Fig. 19. The measurement re-
sults based on a fair coin tossing measurement are
shown in Fig. 20c.

Figure 20c shows that for both possibilities in

implementing a fair coin tossing type of measure-
‘0110>:‘011>® ‘°>h ) or {‘0101»2‘101.)@ ‘°>b X ment process the search for the answer are successful
Result Measuremeb qubitt Result Measuremeb qubitt o ey .
and and demonstrate the possibility of the effective-
0 0 ness of quantum algorithm simulator realization on
classical computer.
011 =jo1®  [1)  or {j1011)}=[100)® |1) ~ Related problems of QA classical simulation
Result Measuremeb qubitt Result Measuremeb qubitt In [6_12] dlscussed
N (L, x=011 " _
‘(xe {01} _{* v ;. [Lxe{011.101}
i [0.x=011 Sxefol; ’:‘\o.xe:oll_ml,:

[Lx=101
[0,x=101

’fm-:, 01F)=

[Lx (010,100,110}

flxefouaf)=
Y7700, x 2(010.100,110)

Fig. 19. Grover’s QA: Step 2. Algorithm execution 3D dynamics: Probabilities

Final state Measured basis vector Answer
______ L __ _< gl x, = Oll
[ | 0111> t"—‘
T [1010>
__________ .l____ x, =101
[1011>
_ 1l | p110> or j1010> — 011
H__ N B— = = X =
un L [ S——{ 0111>0r [1011> — 0 { 101
S [ 10100> or 1000~ or [1100~ |- 2%
. 0. B ‘ > or or > ., = 4100
~{10101> or [1001> or [1101> |- il
(a) (b) ()

Fig. 20. Grover’s QA: Results of algorithm

536



Tpozpammmuvle npodykmel u cucmemot / Software & Systems 36(4), 2023

Conclusions representation for effective simulation on computer

with classical architecture demonstrated. Grover’s

General approach to design of quantum algorithm | quantum search algorithm is explained in detail along
gates is described. Gate-based quantum algorithm | with implementations on a local computer simulator.
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AnHotanus. OTandre KJIacCHYeCKOro aropuTMa oT kBaHToBoro (KA) 3akmodaercst B cleayromeM: 3aaada, peraemas
KA, 3akoaupoBaHa B CTpYKTYpe KBaHTOBBIX OIIEPaTOPOB, IPHMEHSEMBIX K BXOZHOMY CHTHATY. BXoqHOM cHTrHAM B CTPYyK-
Typy KA B 3TOM citydae Bcerna ofauH U TOT xe. Beixonuoit curaan KA Bkimodaer B ceOs HHYOPMAINIO O peIIeHIH 3aKO0-
IUpoBaHHOI pobnemsl. B pesynsrare KA 3amaercs dynknus uis ananusa, u KA onpenensier ee CBOICTBO B BHIE OTBETa
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6e3 KOMMYeCTBEeHHBIX BhruncieHuil. KA u3ydaer kauecTBeHHbIe cBOMcTBa (hyHKIMiA. Sdapom mo6oro KA seisercs Habop
YHUTapHBIX KBaHTOBBIX ONEPATOPOB MM KBAHTOBBIX BeHTHNIEH. Ha mpakTHke KBaHTOBBIA BEHTUIIb MPEACTABISAET COOOI
YHUTapHYIO MaTpHILy C ONpPENEICHHOW CTPYKTYpoil. Pa3Mep 3TOH Marpuilbl pacTeT 3KCIIOHEHLMAIBHO C YBEIMYEHHEM
KOJIMYECTBA BXOMHBIX JAHHBIX, YTO CYIIECTBEHHO OTpaHMYMBAET MoJenHnpoBaHne KA Ha xiaccHueckoM KOMITBIOTEpE C
(oH-HEHMaHOBCKO apXUTEKTYpoi. Mozenn KBaHTOBBIX ITOUCKOBBIX aJITOPUTMOB MPUMEHSIOTCS IS PEICHUs 3a1a4 UH-
(opMaTHKH, TaKUX KaK MOMCK B HECTPYKTYPHPOBAHHOH 0a3e MaHHBEIX, KBAHTOBAsK KPUNTOTpadus, NHXKEHEPHbIE 3aauH,
IIPOEKTHPOBAHNE CHCTEM YIPaBJIeHHs, POOOTOTEXHHUKA, HHTEIUIEKTyaJIbHbIe KOHTPOJUIEPH U T.1. Anroput™ ['posepa mo-
IpOOHO OOBSACHAETCS BMECTE C pealu3alUsIMU Ha JIOKAILHOM KOMIBIOTEPHOM CHMYIsTOpe. B mpencraBieHHON cTaThe
OIHCBIBACTCSI MPAKTUUECKHH MOAX0]] K MOJETHPOBAHHUIO OHOTO U3 CaMbIX H3BECTHBIX KA Ha KITacCHUECKHX KOMITBIOTEpaX —
anroputma ['posepa.

KnroueBble cji0Ba: anropuTMbl KBAHTOBOTO TIOMCKA, KBAHTOBBIE CXEMBI, KBAHTOBbIE aITOPUTMHYIECKHE BEHTHIIN, CUHTE3
KBaHTOBBIX OIIEPaTOPOB

Baarompapuoctn. ITnonorsopusie quckyccnu ¢ B. Kopennasv u K. bennerrom nmoMoriu aBropam Gonee 4eTko chopmy-
JIPOBATH MOJTyYCHHEBIE B pab0Te pe3yIIbTaThl
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