Tpozpammmuvle npodykmel u cucmemot / Software & Systems 36(3), 2023

Software & Systems doi: 10.15827/0236-235X.142.361-377 2023, vol. 36, no. 3, pp. 361-377

Fast quantum search algorithm modelling on conventional computers:
Information analysis of the halting problem
Sergey V. Ulyanov

Viktor S. Ulyanov
For citation
Ulyanov, S.V., Ulyanov, V.S. (2023) ‘Fast quantum search algorithm modelling on conventional computers: Information anal-
ysis of the halting problem’, Software & Systems, 36(3), pp. 361-377 (in Russ.). doi: 10.15827/0236-235X.142.361-377
Article info
Received: 31.03.2023

After revision: 19.06.2023 Accepted: 01.07.2023

Abstract. The paper describes the simplest technique for simulating a quantum algorithm based on the direct matrix rep-
resentation of quantum operators. This approach is stable and precise, but it requires allocation of operator’s matrices in
the computer memory. Since the size of the operators grows exponentially, this approach is useful for simulating quantum
algorithms with a relatively small number of qubits (e.g., approximately 11 qubits on a typical desktop computer). This
approach enables relatively simple simulation of the operation of the solution quality control system and performance of a
reliability analysis. A more efficient fast quality control simulation method is based on computing all or a part of operator
matrices as needed on a current computational basis. This method makes it possible to avoid storing all or a part of the
operator matrices. In this case, the number of qubits to be simulated (e.g., the number of input qubits or the number of
qubits in the system state register) is affected by: (I) the exponential growth in the number of operations required to calculate
the result of matrix products; and (1) the size of the state vector allocated in computer memory. It is reasonable if one
embodiment of this approach involves simulating up to 19 or more qubits on typical desktop computer, and even more in
a system with a vector architecture. Due to particularities of the memory addressing and access processes in a typical
desktop computer (such as, for example, a Pentium PC), when a number of qubits is relatively small, the on-demand com-
puting tends to be faster than the direct storage approach. The compute-on-demand approach benefits from applying the
results of studying quantum operators and their structure that enables computing the matrix elements more efficiently. The
paper considers effective simulation of Grover’s quantum search algorithm using a computer with classical architecture.
Keywords: fast quantum search algorithm, quantum operators, state vector, algorithmic representation, quantum computing,
minimum of Shannon information entropy, termination criteria

Acknowledgements. Fruitful discussion with P. Shor, Ch. Bennet, L. Levitin and V. Belavkin help us to formulate more clear

results for quantum software engineering applications

The study of the on-demand computing ap-
proach for some quantum algorithms (QAs) can
lead to a problem-oriented approach based on the
guantum algorithm (QA) structure and state vector
behavior [1-3]. For example, in Grover’s quantum
search algorithm (QSA) [4], the state vector al-
ways has one of the two different values: (I) one
value corresponds to the probability amplitude of
the answer; and (I1) the second value corresponds
to the probability amplitude of the rest of the state
vector. Based on this assumption, it is possible to
configure the algorithm using these two different
values, and to efficiently simulate Grover’s QSA.
In this case, the primary limit is a representation of
the floating-point numbers used to simulate the ac-
tual values of the probability amplitudes. After the
superposition operation, these probability ampli-

tudes are very small [%j . Thus, it is possible to
2n

simulate Grover’s QSA with this approach simu-
lating 1024 qubits or more without termination
condition calculation and up to 64 qubits or more
with termination condition estimation based on
Shannon entropy.

Other QAs do not necessarily reduce to just two
values. For those algorithms that reduce to a finite

number of values, we can use the techniques for
simplifying the Grover’s QSA, but the maximum
number of input qubits to be simulated will tend to
be smaller, because the probability amplitudes of
other algorithms have relatively more complicated
distributions.

Introduction of an external excitation can de-
crease the possible number of qubits for some al-
gorithms. In some algorithms, the entanglement
and interference operators can be bypassed (or
simplified), and the output is computed based only
on a superposition of the initial states (and decon-
structive interference of the final output patterns)
representing the state of the designed schedule of
control gains. For example, it is possible to make a
particular case of Deutsch-Jozsa’s and Simon al-
gorithms entanglement-free by using pseudo-pure
quantum states [5].

The further disclosure begins with a compara-
tive analysis of the temporal complexity of several
representative QAs. The analysis is followed by an
introduction of the generalized approach in QA
simulation and algorithmic representation of quan-
tum operators. Subsequent portions describe the
structure representation of the QAs applicable to
low level programming on classical computer
(PC), generalizations of the approaches and intro-

361

TIpoepammmvie npooykmul u cucmemot / Software & Systems

36(3), 2023

duction of the general QA simulation tool based on
fast problem-oriented QAs.

The simulation techniques are then applied to a
quantum control algorithm.

It is possible to efficiently implement the ma-
trix-based approach for a small number of input
qubits. The above-mentioned matrix approach is a
useful tool to illustrate complexity issues associ-
ated with QA simulation on classical computer.

The structure of the QA gate
system design

As shown in Fig. 1a, QA simulation can be rep-
resented as a generalized representation of a QA as
a set of sequentially applied smaller quantum gates
(see in details [1]).

Moreover, local optimization of QA compo-
nents according to specific hardware realization

Repeated k times
| | t t
| | | I (h
| | | |)]
o>—» H |—¥» : Hp bt Ly
n | | — ! | M
L L iNT] " E
| | | |
jo>—+—f H | —-T» . N P o
| | U|: i i h R
: : ' ' E
|X> —|—> S —'l> : : > I | '\él Ly
| | — | |
m | | | I |h N
: : | | i
o —»f S |—+¥s = e J s
| L
| | | |
[Input | :|Superposition|:|Entanglement|:| Interference | : [Output |
| | | |
a)
| 1 |
: | : | h
1 | |
o>—L» H J—»: I L pigo>
| I |
| . : .
. | |
n : . | [Dn |
[: :h
|
: | UF I |
o0>—L_» H ! T L [py1>
| | | |
| | I i s
I | I
>——»| H | | » o>
|
: | : :
[|
INPUT : STEP 1 : STEP 2 : STEP 3 : OUTPUT
| | | |
b)
Fig. 1. A generalized representation of a QA:
a) A circuit representation of QA; b) A quantum circuit of Grover’s OSA

362

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

makes it possible to develop appropriate hardware
accelerators for QA simulation using classical
gates.

A generalized approach in QA simulation

In general, any QA can be represented as a cir-
cuit of smaller quantum gates as shown in Fig. 1.
The circuit shown in Fig. 1a is divided into five
general layers: (1) input; (2) superposition; (3) en-
tanglement; (4) interference; and (5) output.

Layer 1: Input. The quantum state vector is set
up to an initial value for this certain algorithm. For
example, the input for Grover’s QSA is a quantum
state |po) described as a tensor product:

|6o)=2,|0)®...®]0)®|0)+

+3,[0)®...®|0)®|1) +

+3;|0)®...®[1)®|0) +... (@)

..+ |[1)®...8|)’1) =

=1/0)®...®|0)®|1) =|0---01),

1 0
where |0) = on; 1) = (J ; ® —denotes Kronecker

tensor product operation.

Such quantum state can be presented as shown
in Fig. 2a.

The coefficients a; in Eq. (1) are called proba-
bility amplitudes. Probability amplitudes can take
negative and/or complex values. However, the
probability amplitudes must obey the following
constraint:

al=1.)

The actual probability of the arbitrary quantum
state a | i> to be measured is calculated as a square

of its probability amplitude value p, =|a, |2 .

Layer 2: Superposition. The Walsh-Hadamard
operator transforms the state of the quantum state
vector so that probabilities are distributed uniformly
among all basis states. The result of the superposi-
tion layer of Grover’s QSA is shown in Fig. 2b as a
probability amplitude representation, and in Fig. 3b
as a probability representation.

Layer 3: Entanglement. Probability amplitudes
of the basis vector corresponding to the current
problem are flipped while rest basis vectors are left
unchanged. Entanglement is typically provided by
controlled-NOT (CNOT) operations. Figs 2c and
3c show the results of entanglement from the ap-
plication of the operator to the state vector after su-
perposition operation. An entanglement operation
does not affect the probability of the state vector to

S0 O Frenill b amall hees
T T

'
0z 7
]
%
5 O
g B o o & & e e]
= -H o o a a [] a o (&
=3
It
a3
=
as o oe o =BT B8
SR 1 Probily ampil e
b T T T : T T T 1
s []
B3 P . 2 . 2]
ol 3 (b

After Sp
&

S hof

%

S A

L L L L L L L L
3 mi 3 i1z =3 ot 3 [
Sien 2 Frctisblil by ampll Les

T T

L WY WA P
= =

L L L
oo me o

After Ent
& oo
hohe
T

D11z 3
Skp 3 Prebisbllly ampll hres

o o

2
o m

= [

o & & & & &
g &, &
]

]

o] =a o
k2t
L L L L

L L L L
oo mi- C:3 o1z 23 [3 e

Fig. 2. Dynamics of Grover’s QSA probability
amplitudes of state vector on each algorithm step

Skp 0 Pronabillly

ut
ah
i
i1}
i1}
i1}
i

. &

o

Eal .) . . PR (a)
:

L L L L L L L L
o mi i o1tz o= not= (3 it
Skp:1Z Proaanilly

B G L

After Spand Ert
dmsh opoo
shRrRaRTRR.
L @
2]
iy

L L L L L L L
o mi: i o1tz o= not= i it
Skp 3 Propabilly

?EIS ?ns
& & & & & = ()

o o [[o o

After Int
dlgds o

ooo
s HoRE nE.

L L L L L L L L
o mi: i o1tz o= not= i it

Fig. 3. Dynamics of Grover’s QSA probabilities
of a state vector on each algorithm step

be measured. Rather, entanglement prepares a
state, which cannot be represented as a tensor
product of simpler state vectors. For example, let
us consider state ¢1 shown in Fig. 2b and state ¢
presented in Fig. 2c:
|000>—|001>+|010>—
¢, =0.35355| —|011)+|100) —|101) + | =
+]110)—|111)
= 0.35355(]00) +|01) +|10) +[11)) (|0) - |1)),
|000) -|001) - |010) +|011) +
+|100) - |101) +[110) - [111)
= 0.35355(|00) - |01) +|10) +|11))|0) -
— 0.35355(]00) +|01) +|10) +|11)) [1).
As shown above, the description of state ¢; can
be presented as a tensor product of simpler states,

while state ¢ (in the measurement basis {|0>|1>}

¢, = 0.35355[

cannot.
Layer 4: Interference. Probability amplitudes
are inverted about the average value. As a result,

363

TIpoepammmvie npooykmul u cucmemot / Software & Systems

36(3), 2023

the probability amplitude of states "marked” by en-
tanglement operation will increase.

Figs 2d and 3d show the results of interference
operator application.

Fig. 2d shows probability amplitudes and Fig. 3d
shows probabilities.

Layer 5: Output. The output layer provides the
measurement operation (extraction of the state
with maximum probability) followed by interpre-
tation of the result. For example, in the case of
Grover’s QSA, the required index is coded in the
first n bits of the measured basis vector.

Since unitary quantum operators implement
various QA layers, simulation of quantum opera-
tors depends on simulating such unitary operators.
Thus, in order to develop an efficient simulation, it
is useful to understand the nature of QA basic
quantum operators.

Basic QA operators

Let us consider the superposition, entangle-
ment and interference operators from the simula-
tion point of view. In this case, the superposition
operators and the interference operators have more
complicated structure and differ from algorithm to
algorithm. Thus, it is first useful to consider the en-
tanglement operators, since they have a similar
structure for all QAs, and differ only by the ana-
lyzed function.

In general, the superposition operator is based
on the combination of the tensor products Hada-

21

tity operator | : | = Lo
yop oo 1)

Remark. As described in [1-3] the simulation
system of quantum computation is based on quan-
tum algorithm gates (QAG). The design process of
QAG includes the matrix design form of three
quantum operators: superposition (Sp), entangle-
ment (Ug) and interference (Int). In a general form,
we can describe the structure of a QAG as follows:

QAG =[(Int &' I)UF]M[”H ®"s],

where | is the identity operator; the symbol ® de-
notes a tensor product; S is equal to | or H and de-
pends on the problem description. One portion of
the design process in QAG is the type-choice of the
entanglement problem-dependent operator Ur that
physically describes the qualitative properties of
the function f.

The Hadamard Transform creates the superpo-
sition on classical states, and quantum operators

1(1 1 . .
mard H operators: H :—[J with the iden-

364

such as CNOT create robust entangled states. The
Quantum Fast Fourier Transform (QFFT) pro-
duces interference. For most QAs the superposi-
tion operator can be expressed as

sz(éHj@(éS), @A)

where n and m are the numbers of inputs and of
outputs respectively. The operator S depends on
the algorithm and can be either the Hadamard op-
erator H or the identity operator I. The numbers of
outputs m as well as structures of the correspond-
ing superposition and interference operators are
presented in Table 1 for different QAs.

Table 1

Parameters of superposition and interference
operators of main quantum algorithms

Algorithm |Superposition| m | Interference
Deutsch’s H®I 1 H®H
Deutsch-Jozsa’s "H®H 1 "H®I
Grover’s "H®H 1 D, ®I
Simon’s "H® "l n "H® "l
Shor’s "H® "l n| QFT, ®"l

Superposition and interference operators are
often constructed as tensor powers of the Hada-
mard operator, which is called the Walsh-Hada-
mard operator. Elements of the Walsh-Hadamard
operator can be obtained as

], - S)

1 (n—l)H (n—l)H

- \/Z_n (”*1)H _(”*1)H '
where i =0,1, j= 0,1, H denotes Hadamard matrix
of order 3.

The rule in Eq. (4) provides a way to speed up
the classical simulation of the Walsh-Hadamard
operators, since the elements of the operator can
be obtained by a simple replication described in
Eq. (4) from the elements of the "*H order opera-
tor.

As an example, we consider the superposition op-
erator of Grover’s algorithm, forn=2,m=1,S=H:

(4)

[Sp]™™"* =*H®H =
IO

H H H H
H -H H -H

]HH—H—H'
H -H

e

-H H

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

Interference operators are calculated for each
algorithm according to the parameters listed in Ta-
ble 1. The interference operator is based on the in-
terference layer of the algorithm, which is different
for various algorithms, and from the measurement
layer, which is the same or similar for most algo-
rithms and includes m™ tensor power of the iden-
tity operator.

The interference operator of the Grover’s algo-
rithm can be written as a block matrix in the fol-
lowing form:

|:|I.“:Grover'sj|ivj D ®I| =

n

{&-“@@l:[—ﬂ%}w‘hj,
El-glin e

where i=0,...,2"-1, j=0,...,2" -1, D, refers to
(_1)1AND(i:j)
a diffusion operator: [D,] . =———.

ij \/2_,1

For example, the interference operator for
Grover’s QSA whenn=2, m=11is;

. 1
o=) = ——2 =
[IntG“’V“L D,®I (|]®|

Nz
=(—1+%)®||ij =

: 7

1
200 -

(T T
As the number of qubits increases, the gain co-
efficient becomes smaller. The dimension of the
matrix increases according to 2", but each element
can be extracted using Eqg. (6), without allocation
of the entire operator matrix.

Remark. Since D,D; =1, Dy is unitary and is
therefore a possible quantum state transformation.
While the matrix Dy, is clearly unitary, it can have
the decomposition form D, =—H _R'H_, where

R'[i,j]=0, ifi#], R'[L1]=-1 and R![i,i]=+L,
if 1<i<N.

In a specific form the operator D, (diffusion —
inversion about average) in Grover algorithm is
decomposed as

-1 0 ..0

D_i(l 1]®” 0 1 ... 0(1 1j®"

"or\1 -1) |0 o0 -.oojl1 -1)
0 0 .1

and can be accomplished with O(n) = O(log(n))
guantum gates. It means that from the viewpoint of
efficient computation the form in Eq. (6) is more
preferable.

An entanglement operator is a sparse matrix.
Using sparse matrix operations, it is possible to ac-
celerate the simulation of the entanglement. Each
row or column of an entanglement operation has
only one position with a non-zero value. This is a
result of the function F reversibility. For example,
let us consider the entanglement operator for a bi-
nary function with two inputs and one output:

f:{0,1)° - {0,1}", such that: f(x) =1, o, 0| .01 -
The reversible function F in this case is:
F:{02° —»{0,1}", such that:

(x.y) x, f(x)®)
00,0 00,0®0=0
00,1 000®1=1
01,0 01,1®0=1
01,1 01,1®1=0
10,0 100®0=0
10,1 101®0=1
11,0 11,0®0=0
11,1 11,1®0=1

The corresponding entanglement block matrix
can be written as:

(00| (01| (10| (11

jooy(1 0 0 0

U _[0D}o 0 0
0o o 1 of
|

lo o o

Figure 2c shows the result applying this opera-
tor in Grover’s QSA.

Command line simulation of the QAs

Let us present an example script of the Grover's
algorithm (http://www.swsys.ru/uploaded/image/
2023-3/2023-3-dop/17.jpg, http://mww.swsys.ru/
uploaded/image/2023-3/2023-3-dop/18.jpg, http://
www.swsys.ru/uploaded/image/2023-3/2023-3-dop/

19.jpg).

365

http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/17.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/17.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/18.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/18.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/19.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/19.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/19.jpg

TIpoepammmvie npooykmul u cucmemot / Software & Systems

36(3), 2023

The algorithm-related script (http://www.
swsys.ru/uploaded/image/2023-3/2023-3-dop/
17.jpg) prepares the superposition (SP), entangle-
ment (ENT) and interference (INT) operators of
the Grover’s algorithm with 3 qubits (including the
measurement qubit). Then it assembles operators
into the quantum gate G.

Then this script creates an input state |in >=|001>
and calculates the output state jout > =G| in >, The
result of this algorithm in Matlab is an allocation
of operator matrices and state vectors in the
memory.

Allocated quantum operator matrices, allocated
input |in > and output |out > state vectors as well as
guantum gate G are available at http://www.
swsys.ru/uploaded/image/2023-3/2023-3-dop/19.
jpg. In order to see the results, we applied visuali-
zation functions (http://www.swsys.ru/uploaded/
image/2023-3/2023-3-dop/18.jpg). The presented
code displays operator matrices in 3D visualiza-
tion Fig. 4.

In this case, the vertical axis corresponds to the
amplitudes of the corresponding matrix elements.
Indexes of the elements are marked with the ket

notation. Input |in> and the output |out> states are
demonstrated in Fig. 5. In this case, the vertical
axis corresponds to the probability amplitudes of
the state vector components. The horizontal axis
corresponds to the index of the state vector com-
ponent marked by the ket notation.

The title of the Fig. 5 contains the values of the
Shannon and the von Neumann entropies of the
corresponding visualized states.

We can formulate and execute other known QA
using similar scripts and the corresponding equa-
tions taken from the previous section.

Simulating QAs as dynamic systems

In order to simulate the behavior of dynamic
systems with quantum effects, it is possible to rep-
resent QA as a dynamic system in the form of a
block diagram and then to simulate its behavior
in time. The example of a Simulink diagram of the
quantum circuit for calculating the accuracy (a|a)

of the quantum state and the density matrix |a)(a|
of the quantum state is available at http://www.

Fig. 4. The example of the Grover algorithm simulation script
(visualization of quantum operators)

ENT

CeINT'ENT SP

366

http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/17.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/17.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/17.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/19.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/19.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/19.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/18.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/18.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/20.jpg

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

oy 0 riropy 50
T

o [oo [Wios (I3

L 1 L L
oo~ WOt wio- CIo 3 oir we nie

Fig. 5. The example of the Grover
algorithm simulation script
(visualization of input and output quantum states)

swsys.ru/uploaded/image/2023-3/2023-3-dop/
20.jpg. This example demonstrates using of the
common functions for simulating the QA dynam-
ics. Bra and ket functions are taken from the com-
mon library.

The ket function output goes to the first input
of the matrix multiplier and as a second input of
the matrix multiplier. The input also proceeds to
the bra function. The output of the bra function
goes to the second input of the matrix multiplier
and as the first input of the matrix multiplier. The
multiplier output is a density matrix of the input
state. The multiplier output is the input state fidel-
ity.

Figure 6 shows the Simulink structure of an ar-
bitrary QA.

Such structure can be used to simulate a num-
ber of quantum algorithms in Matlab/Simulink en-
vironment.

A dedicated QA emulator

The developed QA algorithmic representation
is also applicable for designing QA software emu-
lators. The key point is the reduction of multiple
matrix operations to vector operations and the fol-
lowing replacement of multiplication operations.
This may boost emulation performance, especially
in the algorithms which do not require complex
number operations, and when a quantum state vec-
tor has a relatively simple structure (for example,
Grover’s QSA).

In the QC emulator launch window (http://
www.swsys.ru/uploaded/image/2023-3/2023-3-
dop/21.jpg), we can choose creating a new QC
model or continue modeling an existing one. If we
choose creating a new model, then an algorithm
selection dialog starts (http://www.swsys.ru/
uploaded/image/2023-3/2023-3-dop/22.jpg). Here
a user may choose QA and its dimensions.

In fact, the system may operate with up to 50
qubits and more, however due to visualization
problems, it is better to limit number of qubits
to 10-11.

Once the algorithm initial parameters are set,
the system draws an initial state vector and the se-
lected algorithm structure in the system main win-
dow (http://www.swsys.ru/uploaded/image/2023-
3/2023-3-dop/23.jpg).

The main window contains all information of
the emulated quantum algorithm and permits basic
operations and analysis. There is an access to in-
volved quantum operators from the menu, and it is
possible to modify input functions (http://www.
swsys.ru/uploaded/image/2023-3/2023-3-dop/

Outi

In ik

@_

Termination condition

Dut! QUTPUT

¥
=

k.

Superposition

Clodk
E * | o In 1 Out1
L o -
Relational Suuiteh
E|_ Oparator Entanglemint
Constant
INFUT | In1 Outl H

Intarferen o

Fig. 6. A Simulink diagram for the simulating the arbitrary quantum algorithm

367

http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/20.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/20.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/21.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/21.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/21.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/22.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/22.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/23.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/23.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/24.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/24.jpg

TIpoepammmvie npooykmul u cucmemot / Software & Systems 36(3), 2023
24.jpg, http://www.swsys.ru/uploaded/image/ T—T— x|
2023-3/2023-3-dop/25.jpg).

QA s have reversible nature, so it is possible to -
make forward and backward steps of the algorithm ojojajo [|
by clicking on arrows, and the currently applied al- g 'i ; g ﬂl
gorithm step will be highlighted in the algorithm EEERE
diagram. 1lofn]o

The emulator menu consists of four compo- 1jof1]o
nents: L Ao

1. Item File provides basic operations like pro- 1111110 _Iﬂ
ject save/load and an access to the new model cre- 4 | :

ation interface.

2. Item Model permits an access to the input
function editor.

3. Item View provides an access to operator
matrix visualizers including Superposition, Entan-
glement and Interference operators. It is also pos-
sible to get a 3D preview of an algorithm state dy-
namics (Fig. 4).

4. There is an access to the program documen-
tation from Help menu.

Tabbed interface in the lower part of the win-
dow gives an access to the Shannon entropy chart
and to a 3D representation of the state vector dy-
namics, as well as to a usual, plain representation
of the QA state. The tabbed area size can be mod-
ified by dragging a divider. A click on the middle
point of divider hides the tabbed area form the
screen.

The buttons in the middle part of the main win-
dow permit making steps of the currently parame-
terized QA. As it was mentioned above, the system
can make forward and backward steps.

If the algorithm steps were enough, a click on
the ”1” button will extract an answer from the cur-
rent state vector.

An appropriate result interpretation routine will
be called depending on QA.

The quantum operator visualizer permits dis-
playing a structure of involved quantum operator
matrices in plain and in 3D representations.

If an operator consists of a tensor product of
smaller operators, there is also a possibility to have
an access to sub-blocks of the tensor products.
A 3D visualizer permits zoom and rotation of the
charts.

The input function editor enables automating
the process of the entanglement operator coding as
it was described previously. For Grover’s QSA it
is possible to code functions with more than one
positive output (Fig. 7).

Figures 8, 9 show the results of Grover QSA
simulation with entropy criteria termination.

The developed software can simulate 4 basic
quantum algorithms, e.g. Deutsch-Jozsa’s, Shor’s,

368

Fig. 7. An input function editor
of QA emulator (3-Qubit Grover’s OSA)

Wl Quantum Yisualisator

_ 1ol x|

Fig. 8. A 3D view of the 3-qubit Grover’s OSA
state vector after two algorithm iterations

Wl Quantum ¥isualisator ' =10 x
File Model View Help

¥

[0 ‘IER
D
10] H
Ut

I] H

.
<<| < I » | >>| 1 ||[31]After interference

Wector Entropy |Vect0r 3D I

4

=1.37049

Fig. 9. Shannon entropy dynamics
after 31 steps of Grover’s OSA

Simon’s and Grover’s. The system uses a unified
easy-to-understand interface for all algorithms,
with the options of 3D visualization of state vector
dynamics and quantum operators.

http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/24.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/25.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/25.jpg

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

After analyzing quantum operators presented
in the section 5, we can do the following simplifi-
cation to increase the performance of classical QA
simulations: a) all quantum operators are symmet-
rical around main diagonal matrices; b) a state vec-
tor is allocated as a sparse matrix; c) elements of
guantum operators are not stored, but calculated
when necessary using Egs. (4), (5), (6) and (7);
d) we consider minimum of Shannon entropy of
the quantum state as a termination condition, cal-
culated as:

om#n

H = _z i Iog P - (8)
i=0

The calculation of the Shannon entropy is ap-
plied to a quantum state after the interference
operation [6, 7].

The results of a classical quantum
algorithmic gate simulation

Minimum of the Shannon entropy Eq. (8) cor-
responds to the state when there are few state vec-
tors with high probability (states with minimum
uncertainty). Selecting an appropriate termination
condition is important since QAs are periodical.
Figure 10 shows results of the Shannon infor-
mation entropy calculation for Grover’s algorithm
with 5 inputs.

2 4 6 8 10 12 14 16 18 20
Iteration h

Fig. 10. A Shannon entropy analysis of Grover’s

QSA dynamics with five inputs

Figure 10 shows that for five inputs of Grover’s
QSA, an optimal number of iterations according to
minimum of the Shannon entropy criteria for suc-
cessful result is exactly four. After that, the proba-
bility of a correct answer decreases and algorithm
may fail to produce a correct answer. Note that the-

oretical estimation for 5 inputs gives g 2° =4.44

iterations.
Simulation results of fast Grover QSA are sum-
marized in Table 2.

Table 2
Temporal complexity of Grover’s QSA
simulation on 1.2GHz computer with two CPUs

lterations Temporal complexity, s
No. number h Approach 1 | Approach 2
(one iteration) | (h iterations)
10 25 0.28 ~0
12 50 5.44 ~0
14 100 99.42 ~0
15 142 489.05 ~0
16 201 2060.63 ~0
20 804 - ~0
30 | 25375 - 0.016
40 | 853549 - 4.263
50 | 26353 - 12.425
589

Numbers of iterations for fast algorithm were
estimated according to termination condition as
the minimum of the Shannon entropy of a quantum
state vector. The simulation involved the following
approaches:

Approach 1: Quantum operators are applied as
matrices; elements of quantum operator matrices
are calculated dynamically according to Egs. (5),
(6), and (7). Classical Hardware limit of this ap-
proach is around 20 qubits caused by exponential
temporal complexity.

Approach 2: Quantum operators are replaced
with classical gates. Product operations are re-
moved from simulation according to [8]. A state
vector of probability amplitudes is stored in a com-
pressed form (only different probability ampli-
tudes are allocated in memory). The second ap-
proach makes it possible to perform classical effi-
cient simulation of Grover’s QSA with an arbitrary
large number of inputs (50 qubits and more).

When allocating the state vector in computer
memory, this approach permits simulating 26
qubits on PC with 1GB of RAM. Figure 11 shows
memory required for Grover algorithm simulation,
when the whole state vector is allocated in
memory.

Adding one qubit requires doubling the com-
puter memory needed for simulating Grover's
QSA in case when a state vector is allocated com-
pletely in memory.

Temporal complexity of Grover's QSA is pre-
sented in Fig. 12.

In this case, the state vector is allocated in
memory and quantum operators are replaced with
classical gates according to [8]. The fastest case is
when we compress the state vector and replace
guantum operator matrices with corresponding

369

TIpoepammmvie npooykmul u cucmemot / Software & Systems

36(3), 2023

Memary allocated for state vector, MB

Allocated memory, MB

0 5 10 15 20 2
Qubit number

Fig. 11. Spatial complexity
of Grover QA simulation

Temporal complexity, sec

Time, sec

1
1] 5 10 15 20 25
Qubit number

Fig. 12. Temporal complexity of Grover's QSA

classical gates according to [8]. In this case, we ob-
tain speedup according to Approach 2.

Fast QSA models: The structure
and acceleration method
of quantum algorithm simulation

The analysis of the quantum operator matrices
carried out in the previous sections forms the basis
for specifying structural patterns that give the
background for the algorithmic approach to QA
modeling on classical computers. Allocating only
a fixed set of tabulated (pre-defined) constant val-
ues in the computer memory instead of allocating
huge matrices (even in sparse form) provides com-
putational efficiency. Various elements of the
quantum operator matrix can be obtained by apply-
ing an appropriate algorithm based on structural
patterns and particular properties of the equations
that define matrix elements. Each representation
algorithm uses a set of table values for calculating

370

matrix elements. Calculation of the tables of the
predefined values can be done as a part of the al-
gorithm initialization.

The algorithmic representation of the
Grover’s QA. Figures 13a—c are flowcharts show-
ing implementation of such approach for simulat-
ing superposition (Fig. 13a), entanglement
(Fig. 13b) and interference (Fig. 13c) operators in
Grover’s QSA.

Here n is a number of qubits, i and j are the in-
dexes of a requested element, hc=2""""?
dcl=2""-1 and dc2=2"" are table values.

In Fig. 13a, the i, j values are specified and pro-
vided to an initialization block with loops control
variables ii := i, jj := 0, and k := 0 are initialized,

INPUT: i, j [ohe=ztne

Sy p—

L — -

Yoot

T Yes T o | di=iisHRY
<_ksmn >——<T(ii ANDjj AND 1) = 1 >—— jj:= jj SHR 1
~_ ~— ki=k+1
No I Yes T
[OUTPUT: h + he J ‘ h:i=-h
a)

fii=isHR 1
jji=jdsHrR 1

[OUTPUT: 0]

(iXORj)AND 1) = 1

[OUTPUT: 0] [OUTPUT: del] [OUTPUT: dc2]

c)

Fig. 13. An interference operator
representation algorithm for Grover’s QSA:
a) A superposition operator representation
algorithm for Grover’s QSA; b) An entanglement
operator representation algorithm for Grover’s
QSA,; c) An interference operator representation
algorithm for Grover’s OSA

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

and a calculation variable h := 1 is initialized. Then
the process moves to a decision block. In the deci-
sion block, if k is less than or equal to n, then the
process advances to another decision block; other-
wise, the process advances to an output block
where the output h*hc is computed (where

he = 2—(n+1)/2)
In the decision block, if (ii and jj and 1) = 1,
then the process advances to a block h = —h;

otherwise, the process advances to another block
and passes to the next iteration without probability
amplitude inversion. Alternatively, the process
sets h := —h and proceeds to the next iteration. By
settingii :=iiSHR 1, jj:=jjSHR 1,andk :=k + 1
(where SHR is a shift right operation), and then the
process continues until all probability amplitudes
are assigned.

In Fig. 13, the inputs i, j in an input block are
initialized as ii := i SHR 1, and jj := SHR 1 and
then are passed to the end test.

If the end test fail, it means that the inputs i and
j are pointing to the marked elements; in this case
the process of the probability amplitude inversion
of the marked states is performed.

In Fig. 13c, the interference operator of
Grover’s QSA can be substituted by a simple logic
algorithm that outputs 0 if ((i XOR j) AND 1) = 1.
Then regarding nonzero elements, if i = j then dcl
outputs the process, otherwise dc2, where
dcl=2""-1 and dc2=2"" output the process.

The superposition and entanglement operators
for Deutsch-Jozsa’s QA are the same as superpo-
sition and entanglement operators for Grover’s
QSA (Figs 13a,b), respectively).

The time required for calculating the elements
of an operator’s matrix during a process of apply-
ing a quantum operator is generally small in com-
parison to the total time of performing a quantum
step. Thus, the live load created by exponentially
increasing memory usage tends to be less or at
least similar to the live load created by computing
matrix elements as needed. Moreover, since the al-
gorithms for computing matrix elements tend to be
based on fast bit-wise logic operations, algorithms
are amenable to hardware acceleration.

Table 3 shows comparisons of the traditional and
required matrix calculation when the memory is used
for the algorithm as required (Memory* is memory
used for storing the quantum system state vector).

Table 3 shows that the algorithmic approach
enables a significant speed-up compared with
the prior art direct matrix approach. The use of al-
gorithms for providing matrix elements allows
considerable software optimization, including the

ability to optimize at the machine instruction level.
However, as the number of qubits increases, there
is an exponential increase in temporal complexity,
which shows itself as an increase in time required
for matrix product calculations.

Table 3

Different approaches comparison:
Standard (matrix based)
and algorithmic-based approach

Qubits Standard Calculated
Matrices
Memory,| Time, s | Memory " | Time, s
MB
1 1 0.03 ~0 ~0
8 18 3.4 0.008 0.0325
11 1048 1411 0.064 3.3
16 - — 2 4573
24 - — 512 3.108
64 - - - -

* The results shown in Table 3 are based on the
results of testing the software implementation of the
Grover QSA simulator on a personal computer with
Intel Pentium Il 1 GHz processor and 512 Mb
memory. Only one iteration of the Grover QSA was
performed.

Using structural patterns in the quantum system
state vector and a problem-oriented approach for
each particular algorithm can compensate this in-
crease in temporal complexity. By way of expla-
nation and not by way of limitation, the Grover al-
gorithm is used below to explain the problem-ori-
ented approach to simulating QA on a classical
computer.

The problem-oriented approach based
on a structural pattern of QA state vector

Let n be the input number of qubits. In the
Grover algorithm, half of all 2"** elements of a
vector making up its even components always take
values symmetrical to appropriate odd components
and, therefore, it does not need to be computed.

Odd 2" elements can be classified into two cat-
egories:

- A set of m elements corresponding to truth
points of an input function (or oracle);

- The remaining 2" — m elements.

The values of the same category elements are
always equal.

As discussed above, Grover’s QA only requires
two variables for storing element values. Its limi-
tation in this sense depends only on a computer
representation of the floating-point numbers used

371

TIpoepammmvie npooykmul u cucmemot / Software & Systems

36(3), 2023

for state vector probability amplitudes. For a dou-
ble-precision software implementation of the state
vector representation algorithm, the upper reacha-
ble limit of g-bit number is approximately 1024.

Figure 14 shows a state vector representation
algorithm for Grover’s QA.

In Fig. 14 i is an element index, f is an input
function, vx and va correspond to the element cat-
egory, and v is a temporal variable. The number of
variables for representing a state variable is con-
stant. A constant number of variables for state vec-
tor representation allows reconsidering the tradi-
tional schema of quantum search simulation.

Classical gates are used not for simulating ap-
propriate quantum operators with strict one-to-one
correspondence but for simulating a quantum step
that changes the system state. Matrix product op-
erations are replaced by arithmetic operations with
a fixed number of parameters irrespective of a
qubit number.

Figure 15 shows a generalized schema for effi-
cient simulation of the Grover QA built upon three
blocks, a superposition block H, a quantum step
block UD and a termination block T.

Figure 15 also shows input and output blocks.
A UD block includes a U block and a D block. The
input state from the input block transfers to the su-
perposition block. A superposition of states from
the superposition block transfers to the U block.
An output from the U block transfers to the D
block. An output from the D block transfers to the
termination block. If the termination block termi-
nates iterations, then the state is passed to the out-
put block; otherwise, the state vector is returned to
the U block for iteration.

As shown in Fig. 16, the superposition block H
for Grover’s QSA simulation changes the system
state to the state obtained traditionally by using
n + 1 times the tensor product of Walsh-Hadamard
transformations. In the process shown in Fig. 13,
vx := hc, va ;= hc, and vi := 0, where hc = 27(""2
is a table value.

The quantum step block UD that emulates the
entanglement and interference operators is shown
on Figs 17a-c.

The UD block reduces the temporal complexity
of the quantum algorithm simulation to a linear de-
pendence on the number of executed iterations.

The UD block uses recalculated table values
dcl=2"-1and dc2=2"".

In the U block shown in Fig. 17, vx :=—vx and
vi=vi+ 1

In the D block shown in Fig. 17b,
Vv = m*vx+dcl*va, v := v/dc2, vx := v — vx, and

372

—

INPUT: i] vi=va ‘
— \“ No _,/"/ T es
< f(isHR1)=1= _iAwD1=1 = vi=-v
T we |
‘ Vi= VX [OuUTPUT: v

Fig. 14. A state vector representation algorithm

for Grover’s quantum search
OUTPUT
STATE

Fig. 15. A generalized simulation schema
for Grover’s QSA

vx := hc
va := hc
vi:=0
INPUT OUTPUT
| he = 2712

Fig. 16. A superposition block for Grover’s QSA

va := v —va; in the UD block shown in Fig. 17c,
v :=dcl*va =m*vx, v:=v/dc2, vx ;= v + VX, va =
:=v-va,andvi:=vi+ 1.

The termination block T is general for all QAs
without regard to the operator matrix realization.
Block T provides intelligent termination condition
for a search process. Thus, the block T controls the
number of iterations through the block UD by
providing enough iteration to achieve a high prob-
ability of arriving at a correct answer to the search
problem. The block T uses a rule based on observ-
ing the changing of the vector element values ac-
cording to two classification categories. During a
number of iterations, T block check that the values
of same category elements monotonically increase
or decrease while values of other category ele-
ments changed monotonically in reverse direction.
If the direction is changed after some number of
iterations, it means that an extremum point corre-
sponding to a state with maximum or minimum un-
certainty is passed. The process can use direct val-
ues of amplitudes instead of considering Shannon
entropy value, thus, it significantly reduces the re-

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

INPUT 3= ot OUTPUT
vii=vi+1l

U
a)
v:i=m'vx +dcl*va
v:=v/dc2
VX 1= V-VX
va:=v-va
INPUT OUTPUT
dc1=2"-m
dc2 =2"!
D | 0 e
b)
v:=dcl+*va-m*vx
vi=v/dc2
VX =V + VX
va:=v-va
dc1=2"-m
P ode2z=2"
UD N e ccccecmcmeemcemm——ee S,
c)

Fig. 17. A quantum step block for the Grover’s
quantum search: a) Emulation of the entanglement
operator application of Grover’s OSA;

b) Emulation of interference operator application
of Grover’s OSA;) A quantum step block

for the Grover’s quantum search

quired number of calculations for determining the
minimum uncertainty state that guarantees the
high probability of a correct answer.

The termination algorithm implemented in T
block can use one or more of five different termi-
nation models:

Model 1: Stop after a predefined number of it-
erations;

Model 2: Stop on the first local entropy mini-
mum;

Model 3: Stop on the lowest entropy within a
predefined number of iterations;

Model 4: Stop on a predefined level of accepta-
ble entropy; and/or

Number
of iterations

POP
B 7
Fig. 19. The component B
for a termination block

Model 5: Stop on the acceptable level or lowest
reachable entropy within the predefined number of
iterations.

Note that models 1-3 do not require calculating
an entropy value.

Figures 18-20 show the structure of termination
condition blocks T.

Since time efficiency is one of the major de-
mands on such termination condition algorithm, a
separate module represents each part of the termi-
nation algorithm; and before the termination algo-
rithm starts, links are built between the modules in
correspondence to the selected termination model
by initializing the appropriate functions’ calls.

Table 4 shows components for the termination
condition block T for the various models.

Table 4
Termination block construction
Model T B’ C’
1 A — —
2 B PUSH —
3 C A B
4 D — —
5 C A E

The elements A, B, PUSH, C, D, E, and PUSH-
code in Table 4 correspond to the flowcharts
(http://lwww.swsys.ru/uploaded/image/2023-3/
2023-3-dop/26.jpg, http://vww.swsys.ru/uploaded/

373

http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/26.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/26.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/27.jpg

TIpoepammmvie npooykmul u cucmemot / Software & Systems

36(3), 2023

INPUT

N
QUTPUT: YES 2. outpuT: NO

Yes
A

mvX ;= VX
mva :=va
mvi ;= vi

PUSH

L

a)

OUTPUT

VX := mVX
va = mva
vi = mvi

POP

b)
Fig. 20. The description of PUSH and POP
components: a) The component PUSH for

a termination block; b) The component POP
for a termination block

image/2023-3/2023-3-dop/27.jpg, http://www.
swsys.ru/uploaded/image/2023-3/2023-3-dop/
28.Jpg).

In model 1 requires only one test after each ap-
plication of quantum step block UD, block A per-
forms this test. Therefore, the initialization in-
cludes assuming A to be T, i.e., function calls to T
are addressed to block A shown in Fig. 18.

As shown in Fig. 18, A block checks if the max-
imum number of iterations has been reached, if so,
then the simulation is terminated, otherwise the
simulation continues.

In model 2, simulation stops when the direction
of category value modification is changed. Model
2 uses the comparison of the current value of vx
category with mvx value that represents this cate-
gory value obtained in previous iteration:

I. If vx is greater than mvy, its value is stored in
mvx, Vi value is stored in mvi, and the termination
block proceeds to the next quantum step;

I1. If vx is less than mvx, it means that vx maxi-
mum is passed and the process needs to set the cur-
rent (final) value of vx := mvx, vi := mvi, and stop
the iteration process. So, the process stores the

374

maximum of vx in mvx and the appropriate iteration
number vi in mvi. Here block B, shown in Fig. 19 is
used as the main block of the termination process.

The block PUSH shown in the Fig. 20a is used
for performing a comparison and for storing the vx
value in mvx (case a). A POP block shown in
Fig. 20b is used for restoring the mvx value (case b).
In the PUSH block in Fig. 20a, if |vx| > |mvx|, then
mvx := vX, mva := va, mvi ;= vi, and the block re-
turns true; otherwise, the block returns false.

In the POP block in Fig. 17b, if |vx| <= [mvx],
then vx := mvx, va := mva, and vi := mvi.

The model 3 termination block checks to see
that a predefined number of iterations do not ex-
ceed (using block A in Fig. 20):

- If the check is successful, then the termina-
tion block compares the current value of vx with
mvx. If mvx is less than, it sets the value of mvx
equal to vx and the value of mvi equal to vi. If mvx
is less using the PUSH block, then perform the next
quantum step;

- If the check operation fails, then (if needed)
the final value of vx equal to mvx, vi equal to mvi
(using the POP block) and the iterations stop.

The model 4, the termination block uses a sin-
gle component block D (http://www.swsys.ru/up-
loaded/image/2023-3/2023-3-dop/27.jpg).

The D block compares the current Shannon en-
tropy value with a predefined acceptable level.
If the current Shannon entropy is less than the
acceptable level, then the iteration process is
stopped; otherwise, the iterations continue.

The model 5 termination block uses the A block
to check that a predefined number of iterations do
not exceeded. If the maximum number is exceeded,
then the iterations are stopped. Otherwise, the D
block is then used to compare the current value of
the Shannon entropy with the predefined acceptable
level. If an acceptable level is not achieved, then the
PUSH block is called and the iterations continue.
After the last performed iteration, the POP block is
called to restore the vx category maximum and ap-
propriate vi number and the iterations end.

Figure 21 shows measurement of the final am-
plitudes in the output state to determine success or
failure of the search.

If |vx| > |va|, then the search was successful;
otherwise the search was not successful.

Table 5 lists the results of testing the optimized
version of Grover QSA simulator on a personal
computer with Pentium 4 processor at 2GHz.

Using the above algorithm, a simulation of
a 1000 qubit Grover QSA requires only 96 seconds
for 108 iterations (http://www.swsys.ru/up-loaded/
image/2023-3/2023-3-dop/29.jpg).

http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/27.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/28.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/28.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/28.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/27.jpg
http://www.swsys.ru/uploaded/image/2023-3/2023-3-dop/27.jpg
http://www.swsys.ru/up-loaded/image/2023-3/2023-3-dop/29.jpg
http://www.swsys.ru/up-loaded/image/2023-3/2023-3-dop/29.jpg

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

INPUT: VX, va

| OUTPUT: YES I | OUTPUT: NO I

Fig. 21. Final measurement emulation

The theoretical boundary of this approach is not
the number of qubits, but the representation of the
floating-point numbers.

Table 5
High probability answers for Grover QSA
Qubits Iterations Time
32 51471 0.007
36 205887 0.018
40 823549 0.077
44 3294198 0.367
48 13176794 1.385
52 52707178 3.267
56 210828712 20.308
60 843314834 81.529
64 3373259064 328.274

The practical bound is limited by the front side
bus frequency of a personal computer.

Related works. The presented approach was
firstly suggested in [9-11] for efficient simulation

of quantum algorithms on classical computers with
minimum Shannon entropy measure of termina-
tion of searching processes [7] and differ from re-
sults in [12-16] and [17-20].

Conclusions

In this paper we have: presented a design
method of a modular system for realization of the
Grover’s Quantum Search Algorithm; developed a
design process of main quantum operators with al-
gorithmic description for quantum algorithm gates
simulation on a classical computer.

We also have: introduced model representa-
tions of quantum operators in fast QAs; described
an algorithmic based approach when matrix ele-
ments are calculated on demand; demonstrated a
problem-oriented approach, where we succeeded
to run Grover’s algorithm with up to 64 and more
qubits with Shannon entropy calculation (up to
1024 without termination condition) and consid-
ered it as a solution of a classically intractable
problem.

These results are the background for efficient
simulation of quantum soft computing algorithms
on a classical computer, robust fuzzy control based
on quantum genetic (evolutionary) algorithms and
quantum fuzzy neural networks (that can imple-
mented as modified Grover’s QSA), Al-problems
as quantum game’s gate simulation approaches and
guantum learning, quantum associative memo-
ry, quantum optimization.

Reference List

1. Nielsen, M.A., Chuang, I.L. (2000) Quantum Computation and Quantum Information. UK: Cambridge University
Press, 676 p.

2. Serrano, M.A., Perez-Castillo, R., Piattini, M. (2022) Quantum Software Engineering. Springer Verlag Publ., 330 p.

3. Kaorenkov, V.V., Reshetnikov, A.G., Ulyanov, S.V. (2022) Quantum Software Engineering. Vol. 2. Moscow, 452 p.

4. Grover, L.K. (2001) A Fast Quantum Mechanical Algorithms, US, Pat. 6,317,766 B1.

5. Ivancova, O.V., Korenkov, V.V, Ulyanov, S.V. (2020) Intelligent Computing Technologies. Pt. 2. Quantum Com-
puting and Algorithms. Quantum Self-Organization Algorithm. Quantum Fuzzy Inference. Moscow: Kurs Publ., 296 p.

6. Ulyanov, S.V., Panfilov, S.A., Kurawaki, 1., Yazenin, A.V. (2001) ‘Information analysis of quantum gates for
simulation of quantum algorithms on classical computers’, in QCM&C, pp. 207-214. doi: 10.1007/0-306-47114-0_32.

7. Ghisi, F., Ulyanov, S.V. (2000) ‘The information role of entanglement and interference in Shor quantum algorithm
gate dynamics’, J. of Modern Optics, 47(12), pp. 2079-2090. doi: 10.1080/09500340008235130.

8. Amato, P., Ulyanov, S., Porto, D., Rizzotto, G.G. (2003) ‘Hardware architecture system design of quantum algo-
rithm gates for efficient simulation on classical computers’, Proc. SCI, 3, pp. 398-403.

9. Panfilov, S.A., Ulyanov, S.V., Litvintseva, L.V., Yazenin, A.V. (2004) ‘Fast algorithm for efficient simulation
of quantum algorithm gates on classical computer’, Systemics, Cybernetics and Informatics, 2(3), pp. 63-68.

10. Ulyanov, S.V. (2003) System and Method for Control Using Quantum Soft Computing, US, Pat. 6,578,018 B1.

11. Ulyanov, S.V., Panfilov, S.A. (2006) Efficient Simulation of Quantum Algorithm Gates on Classical Computer
Based on Fast Algorithm, US, Pat. 2006/0224.547 Al.

12. Nyman, P. (2007) ‘Simulation of quantum algorithms with a symbolic programming language’, ArXiv,
art. 0705.3333v2, available at: https://arxiv.org/abs/0705.3333v2 (accessed November 18, 2022).

13. Julia-Diaz, B., Burdis, J.M., Tabakin, F. (2009) ‘QDENSITY — A Mathematica quantum computer simulation’,
CPC, 180(3), art. 474. doi: 10.1016/j.cpc.2008.10.006.

14. Cumming, R., Thomas, T. (2022) ‘Using a quantum computer to solve a real-world problem —what can be achieved
today?’, ArXiv, art. 2211.13080v1, available at: https://arxiv.org/abs/2211.13080v1 (accessed November 18, 2022).

375

https://search.crossref.org/?q=10.1007%2F0-306-47114-0_32&from_ui=yes
https://search.crossref.org/?q=10.1080%2F09500340008235130&from_ui=yes
https://arxiv.org/abs/0705.3333v2
https://search.crossref.org/?q=10.1016%2Fj.cpc.2008.10.006&from_ui=yes
https://arxiv.org/abs/2211.13080v1

TIpoepammmvie npooykmul u cucmemot / Software & Systems 36(3), 2023

15. Ovide, A., Rodrigo, S., Bandic, M., Van Someren, H., Feld, S. et al. (2023) ‘Mapping quantum algorithms to multi-
core quantum computing architectures’, ArXiv, art. 20232303.16125v1, available at: https://arxiv.org/pdf/2303.16125.pdf
(accessed November 18, 2022).

16. Abhijith, J., Adedoyin, A., Ambrosiano, J., Anisimov, P. et al. (2022) ‘Quantum algorithm implementations
for beginners’, ArXiv, art. 1804.03719v3, available at: https://arxiv.org/abs/1804.03719v3 (accessed June 27, 2022).

17. Tezuka, H., Nakaji, K., Satoh, T., Yamamoto, N. (2021) ‘Grover search revisited; application to image pattern
matching’, ArXiv, art. 2108.10854v2, available at: https://arxiv.org/abs/2108.10854v2 (accessed Oct 1, 2021).

18. Vlasic, A., Certo, S, Pham, A. (2022) ‘Complement Grover’s search algorithm: An amplitude suppression imple-
mentation’, ArXiv, art. 2209.10484v1, available at: https://arxiv.org/abs/2209.10484 (accessed September 27, 2022).

19. Chattopadhyay, A., Menon, V. (2021) ‘Fast simulation of Grover’s quantum search on classical computer’, ArXiv,
art. 2005.04635, available at: https://arxiv.org/pdf/2005.04635.pdf (accessed September 27, 2022).

20. Toffano, Z., Dubois, F. (2020) ‘Adapting logic to physics: The quantum-like eigenlogic program’, Entropy, 22(2),
art. 139. doi: 10.3390/e22020139.

VK 512.6,517.9, 519.6 doi: 10.15827/0236-235X.142.361-377 2023. T. 36. Ne 3. C. 361-377

Mouennponaﬂne 6I>ICTp0F0 AJITOPUTMA KBAHTOBOI'0 MOUCKA HA KJIIACCHYECKUX KOMIIBIOTEpPax:
HH(OPMALIMOHHBIH aHAIU3 P00OJIEeMb]l OCTAHOBA
C.B. YabsinoB
B.C. YabsinoB
Ccblika 1Sl IUTHPOBAHUSA
VabsinoB C.B., Yinbsaos B.C. MoaenupoBanue ObICTpOro aJirOpuTMa KBAaHTOBOT'O MOMCKA HA KJIACCHYECKHX KOMITBIOTE-
pax: mH(MOpPMAIMOHHBIA aHauM3 npobiemsl ocraHoBa // IIporpammuble mpomykTel u cuctembl. 2023. T. 36. Ne 3.
C. 361-377. doi: 10.15827/0236-235X.142.361-377
HNudopmanus o cratbe
[ocrynuna B penakmmio: 31.03.2023 [ocne nopabotku: 19.06.2023 [punsTa x myomukamuu: 01.07.2023

AnnoTtamust. Onrcana MeToAnKa MOAN(GHKAIIMY MOACITUPOBAHNS KBAHTOBOTO alrOPUTMa, OCHOBaHHAs Ha MPSMOM (00T~
moro 00beMa) MaTPUIHOM IPEICTaBICHUH KBAHTOBBIX OMEPATOPOB. DTOT MOAXO CTaOMIICH U TOYEH, HO TpeOyeT pa3mMe-
IIEeHHs] MaTPHIl ONepaTopa B MaMATH KoMmbioTepa. [IocKoIbKy pasMep omepaTopoB pacTeT SKCHOHEHIMAIBHO, TOIXO0T
TIOJIE€3€H JUT MOJEIMPOBAHHS KBAHTOBBIX AITOPHUTMOB C OTHOCHTEIHEHO HEOOIBIINM KOJIHYECTBOM KyOHTOB (HampuMmep,
npubnm3uTensHo 11 KyONTOB HAa THIIOBOM KOMIThIOTEpE). MICTIONmB3yst €ro, OTHOCHTEIEHO MPOCTO CMOAEIHPOBATh PaboTy
CHCTEMBI KOHTPOJISI KaueCcTBa PEIICHHS U BBITIOJHUTD aHATHM3 JOCTOBEpHOCTH. bosee apekTuBHBII MeTOa GHICTPOTO MO-
ACIUPOBaHUA KOHTPOJISA Ka4€CTBa OCHOBAH HA BBIYMCIICHUUN BCEX UJIK YAaCTHU ONIEPATOPHBLIX MAaTPHUIL 110 MEPE HCO6XOJII/IMO—
CTH Ha TeKylleHd BBIYMCIUTENBHON OCHOBe. Vcmonp3ys JaHHBI METOJ, MOXKHO M30€XaTh COXPAaHEHHUsS BCEX WJIM YacTU
OMepaTopHBIX MaTpHULl. B 3TOM ciyuae Konn4ecTBO KyOHTOB, KOTOPhIE MOTYT ObITH CMOAETUPOBAHBI (HAIIpUMeEp, KOJINYe-
CTBO BXOJHBIX KyOUTOB MJIH KOJIMYECTBO KyOHTOB B PETHCTPE COCTOSIHUSI CHCTEMBI), BIMSET Ha SKCIIOHSHI[ANBHBIA POCT
YHCIIa OTepanuii, HeoOXOIMMBIX ISl BEIYHCIICHNS pe3yIbTaTa MaTPUIHBIX PON3BEICHUMH, M Ha pa3Mep BEKTOpa COCTOSI-
HUS, BBIEISIEMOTO B TTaMSITH KOMITbIOTEpa. B 0lHOM M3 BapnaHTOB MPUMEHEHHS 3TOTO ITOX0a IeIeCO00Pa3HO MOIEITH-
poBarts 110 19 nm Gonee KyOUTOB HAa TUIIMYHOM HACTOJIFHOM KOMITBIOTEpE 1 JaXke OOJIbIIIe Ha CHCTEMEe C BEKTOPHOU apXH-
TeKTypo#. M3-3a 0coOeHHOCTEH MPOLIECCOB a/ipecalliy MaMsATH U JOCTyNa K Hell B TUIIMYHOM HACTOJILHOM KOMITBIOTEpPE
(HanpuMmep, epCOHANIBHBIN KOMITbIOTEp Ha 6a3e Pentium), koria KONMMUECTBO KyOUTOB OTHOCHTEIIHLHO HEBEUKO, TOXO
«BBIYUCIICHUS 110 TPEOOBAHUIO», KaK MPaBUiI0, 3 GeKTHBHEE, YeM MOAXO ¢ IPSIMBIM XpaHeHueM. [101X0/1 «BBIYHCICHUS
mo Tpe6OBaHI/I}O)) BBIUT'PBIBACT 6naro;1ap$l IIPUMEHEHUIO PE3YJILTATOB ACTAJIBHOI'O U3YYEHU KBAHTOBBIX OIIEPATOPOB U UX
CTPYKTYPHI, UTO MO3BOJIIET Oosee 3 GEeKTHBHO BHIUUCIATS MaTPUYHBIE dIIeMEHTHI. B pabote paccmoTpeHo 3¢ dexTiuBHOE
MOJIENMPOBaHKE aITOpUTMa KBAaHTOBOTO ITOKCKA ['poBepa Ha IMpuMepe KOMITBIOTEpa ¢ KIIACCHYECKONH apXUTEKTYpOii.
KnrodeBble cj10Ba: anropuT™ OBICTPOTO KBAHTOBOTO MOMCKA, KBAHTOBEIE OIIEPATOPEI, BEKTOP COCTOSHHS, alNTOpPUTMHUE-
CKOE IpeJICTaBlICHNe, KBAHTOBBIE BEIMHCICHUS, MUHUMYM HHpOpMaoHHO! HTpornuH LIIeHHOHa, KpuTepHu 3aBepuIeHus
Buaaropapunocru. IInonorsopras muckyccus ¢ I1. Illopom, Y. bennerrom, JI. Jleutunbiv u B. BenaBkunbiM nomorna aB-
TOpam c(HOpMyYIHPOBaTh OoJiee YETKHE PE3YNIBTAThI JUIs MPHUIOKEHHUI KBAHTOBON MPOrPaMMHON HHKEHEPUH

376

https://arxiv.org/pdf/2303.16125.pdf
https://arxiv.org/abs/1804.03719v3
https://arxiv.org/abs/2108.10854v2
https://arxiv.org/abs/2209.10484
https://arxiv.org/pdf/2005.04635.pdf
https://search.crossref.org/?q=10.3390%2Fe22020139&from_ui=yes

Tpozpammmuvle npodykmel u cucmemot / Software & Systems

36(3), 2023

Cnucok JuTepaTypbl

1. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. UK, Cambridge University Press,

2000, 676 p.

2. Serrano M.A., Perez-Castillo R., Piattini M. Quantum Software Engineering. Springer Verlag Publ., 2022, 330 p.

3. Korenkov V.V., Reshetnikov A.G., Ulyanov S.V. Quantum Software Engineering. Moscow, 2022, vol. 2, 452 p.

4. Grover L.K. A Fast Quantum Mechanical Algorithms, US, Pat. 6,317,766 B1, 2001.

5. Hsannosa O.B., Kopenrskos B.B., YibanoB C.B. TexHon0ruy HHTEIIEKTYalIbHBIX BeraucieHuit. Y. 2. KBanToBbIe
BBIYHCIICHUS U alTOpUTMBL. KBaHTOBBIH anroputMm camoopranusauui. KBaHToOBBII HeueTkuii BeIBoA. M., 2020, 296 c.

6. Ulyanov S.V., Panfilov S.A., Kurawaki I., Yazenin A.V. Information analysis of quantum gates for simulation
of quantum algorithms on classical computers. In: QCM&C, 2001, pp. 207-214. doi: 10.1007/0-306-47114-0_32.

7. Ghisi F., Ulyanov S.V. The information role of entanglement and interference in Shor quantum algorithm gate
dynamics. J. of Modern Optics, 2000, vol. 47, no. 12, pp. 2079-2090. doi: 10.1080/09500340008235130.

8. Amato P., Ulyanov S., Porto D., Rizzotto G.G. Hardware architecture system design of quantum algorithm gates
for efficient simulation on classical computers. Proc. SCI, 2003, vol. 3, pp. 398-403.

9. Panfilov S.A., Ulyanov S.V., Litvintseva L.V., Yazenin A.V. Fast algorithm for efficient simulation of quantum
algorithm gates on classical computer. Systemics, Cybernetics and Informatics, 2004, vol. 2, no. 3, pp. 63-68.

10. Ulyanov S.V. System and Method for Control Using Quantum Soft Computing, US, Pat. 6,578,018 B1, 2003.

11. Ulyanov S.V., Panfilov S.A. Efficient Simulation of Quantum Algorithm Gates on Classical Computer Based on

Fast Algorithm, US, Pat. 2006/0224.547 A1, 2006.

12. Nyman P. Simulation of quantum algorithms with a symbolic programming language. ArXiv, 2007, art. 0705.
3333v2. URL.: https://arxiv.org/abs/0705.3333v2 (narta o6pamienus: 18.11.2022).
13. Julid-Diaz B., Burdis J.M., Tabakin F. QDENSITY — A Mathematica quantum computer simulation. CPC, 2009,

vol. 180, no. 3, art. 474. doi: 10.1016/j.cpc.2008.10.006.

14. Cumming R., Thomas T. Using a quantum computer to solve a real-world problem — what can be achieved today?
ArXiv, 2022, art. 2211.13080v1, URL: https://arxiv.org/abs/2211.13080v1 (nara o6pamenus: 18.11.2022).

15. Ovide A., Rodrigo S., Bandic M., Van Someren H., Feld S. et al. Mapping quantum algorithms to multi-core
quantum computing architectures, ArXiv, 2023, art. 20232303.16125v1. URL: https://arxiv.org/pdf/2303.16125.pdf (nara

obparenus: 18.11.2022).

16. Abhijith J., Adedoyin A., Ambrosiano J., Anisimov P. et al. Quantum algorithm implementations for beginners.
ArXiv, 2022, art. 1804.03719v3. URL: https://arxiv.org/abs/1804.03719v3 (nara o6pamienus: 27.06.2022).

17. Tezuka H., Nakaji K., Satoh T., Yamamoto N. Grover search revisited; application to image pattern matching.
ArXiv, 2021, art. 2108.10854v2. URL: https://arxiv.org/abs/2108.10854v2 (narta obpamenus: 01.10.2021).

18. Vlasic A., Certo S, Pham A. Complement Grover’s search algorithm: An amplitude suppression implementation,
ArXiv, 2022, art. 2209.10484v1. URL: https://arxiv.org/abs/2209.10484 (nata obpamenus: 27.09.2022).

19. Chattopadhyay A., Menon V. Fast simulation of Grover’s quantum search on classical computer. ArXiv, 2021,
art. 2005.04635. URL.: https://arxiv.org/pdf/2005.04635.pdf (nara o6pamenwus: 27.09.2022).

20. Toffano Z., Dubois F. Adapting logic to physics: The quantum-like eigenlogic program, Entropy, 2020, vol. 22,

no. 2, art. 139. doi: 10.3390/e22020139.

ABTOpBI

Vabsanos Cepreii Buktoposuy 2,
I.¢.-M.H., podeccop,
ulyanovsv46_46@mail.ru

Yabsinos Buktop Cepreesuy °,
K.T.H., JOIICHT,
ulyanovik@mail.ru

! TocynapcTBeHHbI yHUBEpCUTET «JlyOHa» —
MHCTHTYT cCHCTEMHOTO aHaNM3a U yIIpaBIIeHNS,

r. ly6na, 141980, Poccus

2 O6beIMHEHHBIH HHCTUTYT SAEPHBIX HCCIIETOBAHMH —
JlaGoparopust HHPOPMAIIMOHHBIX TEXHOIOTHH

uM. M.I'. MemepsikoBa, r. Jlyona, 141980, Poccus

3 MocKoBckHii rocy1apcTBEHHBIH YHUBEPCHTET
reone3un u kaprorpapun (MUUT AuK),

r. Mockga, 105064, Poccus

Authors

Sergey V. Ulyanov %2,

Dr.Sc. (Physics and Mathematics), Professor,
ulyanovsv46_46@mail.ru

Viktor S. Ulyanov 8,

Ph.D. (Robotics and Mechatronics),
Associate Professor, ulyanovik@mail.ru

! Dubna State University —

Institute of System Analysis and Management,

Dubna, 141980, Russian Federation

2 Joint Institute for Nuclear Research —

Meshcheryakov Laboratory of Information Technologies,
Dubna, 141980, Russian Federation

3 Moscow State University of Geodesy

and Cartography (MIIGAIK),

Moscow, 105064, Russian Federation

377

https://search.crossref.org/?q=10.1007%2F0-306-47114-0_32&from_ui=yes
https://search.crossref.org/?q=10.1080%2F09500340008235130&from_ui=yes
https://arxiv.org/abs/0705.3333v2
https://search.crossref.org/?q=10.1016%2Fj.cpc.2008.10.006&from_ui=yes
https://arxiv.org/abs/2211.13080v1
https://arxiv.org/pdf/2303.16125.pdf
https://arxiv.org/abs/1804.03719v3
https://arxiv.org/abs/2108.10854v2
https://arxiv.org/abs/2209.10484
https://arxiv.org/pdf/2005.04635.pdf
https://search.crossref.org/?q=10.3390%2Fe22020139&from_ui=yes

